Evaluate
64w^{2}
Differentiate w.r.t. w
128w
Graph
Share
Copied to clipboard
4w^{2}u\times 4u^{-1}\times 4x^{-8}x^{8}
To multiply powers of the same base, add their exponents. Add 9 and -7 to get 2.
4w^{2}\times 4\times 4x^{-8}x^{8}
Multiply u and u^{-1} to get 1.
4w^{2}\times 4\times 4
Multiply x^{-8} and x^{8} to get 1.
16w^{2}\times 4
Multiply 4 and 4 to get 16.
64w^{2}
Multiply 16 and 4 to get 64.
\frac{\mathrm{d}}{\mathrm{d}w}(4w^{2}u\times 4u^{-1}\times 4x^{-8}x^{8})
To multiply powers of the same base, add their exponents. Add 9 and -7 to get 2.
\frac{\mathrm{d}}{\mathrm{d}w}(4w^{2}\times 4\times 4x^{-8}x^{8})
Multiply u and u^{-1} to get 1.
\frac{\mathrm{d}}{\mathrm{d}w}(4w^{2}\times 4\times 4)
Multiply x^{-8} and x^{8} to get 1.
\frac{\mathrm{d}}{\mathrm{d}w}(16w^{2}\times 4)
Multiply 4 and 4 to get 16.
\frac{\mathrm{d}}{\mathrm{d}w}(64w^{2})
Multiply 16 and 4 to get 64.
2\times 64w^{2-1}
The derivative of ax^{n} is nax^{n-1}.
128w^{2-1}
Multiply 2 times 64.
128w^{1}
Subtract 1 from 2.
128w
For any term t, t^{1}=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}