Solve for w
w = \frac{\sqrt{321} - 1}{8} \approx 2.114559108
w=\frac{-\sqrt{321}-1}{8}\approx -2.364559108
Share
Copied to clipboard
16w^{2}+4w=80
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
16w^{2}+4w-80=80-80
Subtract 80 from both sides of the equation.
16w^{2}+4w-80=0
Subtracting 80 from itself leaves 0.
w=\frac{-4±\sqrt{4^{2}-4\times 16\left(-80\right)}}{2\times 16}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16 for a, 4 for b, and -80 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
w=\frac{-4±\sqrt{16-4\times 16\left(-80\right)}}{2\times 16}
Square 4.
w=\frac{-4±\sqrt{16-64\left(-80\right)}}{2\times 16}
Multiply -4 times 16.
w=\frac{-4±\sqrt{16+5120}}{2\times 16}
Multiply -64 times -80.
w=\frac{-4±\sqrt{5136}}{2\times 16}
Add 16 to 5120.
w=\frac{-4±4\sqrt{321}}{2\times 16}
Take the square root of 5136.
w=\frac{-4±4\sqrt{321}}{32}
Multiply 2 times 16.
w=\frac{4\sqrt{321}-4}{32}
Now solve the equation w=\frac{-4±4\sqrt{321}}{32} when ± is plus. Add -4 to 4\sqrt{321}.
w=\frac{\sqrt{321}-1}{8}
Divide -4+4\sqrt{321} by 32.
w=\frac{-4\sqrt{321}-4}{32}
Now solve the equation w=\frac{-4±4\sqrt{321}}{32} when ± is minus. Subtract 4\sqrt{321} from -4.
w=\frac{-\sqrt{321}-1}{8}
Divide -4-4\sqrt{321} by 32.
w=\frac{\sqrt{321}-1}{8} w=\frac{-\sqrt{321}-1}{8}
The equation is now solved.
16w^{2}+4w=80
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{16w^{2}+4w}{16}=\frac{80}{16}
Divide both sides by 16.
w^{2}+\frac{4}{16}w=\frac{80}{16}
Dividing by 16 undoes the multiplication by 16.
w^{2}+\frac{1}{4}w=\frac{80}{16}
Reduce the fraction \frac{4}{16} to lowest terms by extracting and canceling out 4.
w^{2}+\frac{1}{4}w=5
Divide 80 by 16.
w^{2}+\frac{1}{4}w+\left(\frac{1}{8}\right)^{2}=5+\left(\frac{1}{8}\right)^{2}
Divide \frac{1}{4}, the coefficient of the x term, by 2 to get \frac{1}{8}. Then add the square of \frac{1}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
w^{2}+\frac{1}{4}w+\frac{1}{64}=5+\frac{1}{64}
Square \frac{1}{8} by squaring both the numerator and the denominator of the fraction.
w^{2}+\frac{1}{4}w+\frac{1}{64}=\frac{321}{64}
Add 5 to \frac{1}{64}.
\left(w+\frac{1}{8}\right)^{2}=\frac{321}{64}
Factor w^{2}+\frac{1}{4}w+\frac{1}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(w+\frac{1}{8}\right)^{2}}=\sqrt{\frac{321}{64}}
Take the square root of both sides of the equation.
w+\frac{1}{8}=\frac{\sqrt{321}}{8} w+\frac{1}{8}=-\frac{\sqrt{321}}{8}
Simplify.
w=\frac{\sqrt{321}-1}{8} w=\frac{-\sqrt{321}-1}{8}
Subtract \frac{1}{8} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}