Factor
\left(v-4\right)\left(4v+1\right)
Evaluate
\left(v-4\right)\left(4v+1\right)
Share
Copied to clipboard
4v^{2}-15v-4
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-15 ab=4\left(-4\right)=-16
Factor the expression by grouping. First, the expression needs to be rewritten as 4v^{2}+av+bv-4. To find a and b, set up a system to be solved.
1,-16 2,-8 4,-4
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -16.
1-16=-15 2-8=-6 4-4=0
Calculate the sum for each pair.
a=-16 b=1
The solution is the pair that gives sum -15.
\left(4v^{2}-16v\right)+\left(v-4\right)
Rewrite 4v^{2}-15v-4 as \left(4v^{2}-16v\right)+\left(v-4\right).
4v\left(v-4\right)+v-4
Factor out 4v in 4v^{2}-16v.
\left(v-4\right)\left(4v+1\right)
Factor out common term v-4 by using distributive property.
4v^{2}-15v-4=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
v=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 4\left(-4\right)}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
v=\frac{-\left(-15\right)±\sqrt{225-4\times 4\left(-4\right)}}{2\times 4}
Square -15.
v=\frac{-\left(-15\right)±\sqrt{225-16\left(-4\right)}}{2\times 4}
Multiply -4 times 4.
v=\frac{-\left(-15\right)±\sqrt{225+64}}{2\times 4}
Multiply -16 times -4.
v=\frac{-\left(-15\right)±\sqrt{289}}{2\times 4}
Add 225 to 64.
v=\frac{-\left(-15\right)±17}{2\times 4}
Take the square root of 289.
v=\frac{15±17}{2\times 4}
The opposite of -15 is 15.
v=\frac{15±17}{8}
Multiply 2 times 4.
v=\frac{32}{8}
Now solve the equation v=\frac{15±17}{8} when ± is plus. Add 15 to 17.
v=4
Divide 32 by 8.
v=-\frac{2}{8}
Now solve the equation v=\frac{15±17}{8} when ± is minus. Subtract 17 from 15.
v=-\frac{1}{4}
Reduce the fraction \frac{-2}{8} to lowest terms by extracting and canceling out 2.
4v^{2}-15v-4=4\left(v-4\right)\left(v-\left(-\frac{1}{4}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 4 for x_{1} and -\frac{1}{4} for x_{2}.
4v^{2}-15v-4=4\left(v-4\right)\left(v+\frac{1}{4}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
4v^{2}-15v-4=4\left(v-4\right)\times \frac{4v+1}{4}
Add \frac{1}{4} to v by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
4v^{2}-15v-4=\left(v-4\right)\left(4v+1\right)
Cancel out 4, the greatest common factor in 4 and 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}