Skip to main content
Solve for u
Tick mark Image

Similar Problems from Web Search

Share

u\left(4u-9\right)=0
Factor out u.
u=0 u=\frac{9}{4}
To find equation solutions, solve u=0 and 4u-9=0.
4u^{2}-9u=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
u=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -9 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
u=\frac{-\left(-9\right)±9}{2\times 4}
Take the square root of \left(-9\right)^{2}.
u=\frac{9±9}{2\times 4}
The opposite of -9 is 9.
u=\frac{9±9}{8}
Multiply 2 times 4.
u=\frac{18}{8}
Now solve the equation u=\frac{9±9}{8} when ± is plus. Add 9 to 9.
u=\frac{9}{4}
Reduce the fraction \frac{18}{8} to lowest terms by extracting and canceling out 2.
u=\frac{0}{8}
Now solve the equation u=\frac{9±9}{8} when ± is minus. Subtract 9 from 9.
u=0
Divide 0 by 8.
u=\frac{9}{4} u=0
The equation is now solved.
4u^{2}-9u=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4u^{2}-9u}{4}=\frac{0}{4}
Divide both sides by 4.
u^{2}-\frac{9}{4}u=\frac{0}{4}
Dividing by 4 undoes the multiplication by 4.
u^{2}-\frac{9}{4}u=0
Divide 0 by 4.
u^{2}-\frac{9}{4}u+\left(-\frac{9}{8}\right)^{2}=\left(-\frac{9}{8}\right)^{2}
Divide -\frac{9}{4}, the coefficient of the x term, by 2 to get -\frac{9}{8}. Then add the square of -\frac{9}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
u^{2}-\frac{9}{4}u+\frac{81}{64}=\frac{81}{64}
Square -\frac{9}{8} by squaring both the numerator and the denominator of the fraction.
\left(u-\frac{9}{8}\right)^{2}=\frac{81}{64}
Factor u^{2}-\frac{9}{4}u+\frac{81}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(u-\frac{9}{8}\right)^{2}}=\sqrt{\frac{81}{64}}
Take the square root of both sides of the equation.
u-\frac{9}{8}=\frac{9}{8} u-\frac{9}{8}=-\frac{9}{8}
Simplify.
u=\frac{9}{4} u=0
Add \frac{9}{8} to both sides of the equation.