Solve for u
u=-\frac{6v}{7}
Solve for v
v=-\frac{7u}{6}
Share
Copied to clipboard
4u+8v+3u=2v
Add 3u to both sides.
7u+8v=2v
Combine 4u and 3u to get 7u.
7u=2v-8v
Subtract 8v from both sides.
7u=-6v
Combine 2v and -8v to get -6v.
\frac{7u}{7}=-\frac{6v}{7}
Divide both sides by 7.
u=-\frac{6v}{7}
Dividing by 7 undoes the multiplication by 7.
4u+8v-2v=-3u
Subtract 2v from both sides.
4u+6v=-3u
Combine 8v and -2v to get 6v.
6v=-3u-4u
Subtract 4u from both sides.
6v=-7u
Combine -3u and -4u to get -7u.
\frac{6v}{6}=-\frac{7u}{6}
Divide both sides by 6.
v=-\frac{7u}{6}
Dividing by 6 undoes the multiplication by 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}