Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

-25\sqrt{t}=-4t
Subtract 4t from both sides of the equation.
\left(-25\sqrt{t}\right)^{2}=\left(-4t\right)^{2}
Square both sides of the equation.
\left(-25\right)^{2}\left(\sqrt{t}\right)^{2}=\left(-4t\right)^{2}
Expand \left(-25\sqrt{t}\right)^{2}.
625\left(\sqrt{t}\right)^{2}=\left(-4t\right)^{2}
Calculate -25 to the power of 2 and get 625.
625t=\left(-4t\right)^{2}
Calculate \sqrt{t} to the power of 2 and get t.
625t=\left(-4\right)^{2}t^{2}
Expand \left(-4t\right)^{2}.
625t=16t^{2}
Calculate -4 to the power of 2 and get 16.
625t-16t^{2}=0
Subtract 16t^{2} from both sides.
t\left(625-16t\right)=0
Factor out t.
t=0 t=\frac{625}{16}
To find equation solutions, solve t=0 and 625-16t=0.
4\times 0-25\sqrt{0}=0
Substitute 0 for t in the equation 4t-25\sqrt{t}=0.
0=0
Simplify. The value t=0 satisfies the equation.
4\times \frac{625}{16}-25\sqrt{\frac{625}{16}}=0
Substitute \frac{625}{16} for t in the equation 4t-25\sqrt{t}=0.
0=0
Simplify. The value t=\frac{625}{16} satisfies the equation.
t=0 t=\frac{625}{16}
List all solutions of -25\sqrt{t}=-4t.