Solve for w
w=-\frac{5s\left(2s+1\right)}{3}
Solve for s (complex solution)
s=\frac{\sqrt{25-120w}}{20}-\frac{1}{4}
s=-\frac{\sqrt{25-120w}}{20}-\frac{1}{4}
Solve for s
s=\frac{\sqrt{25-120w}}{20}-\frac{1}{4}
s=-\frac{\sqrt{25-120w}}{20}-\frac{1}{4}\text{, }w\leq \frac{5}{24}
Share
Copied to clipboard
20s^{2}=\left(3\left(s-w\right)-4\times 2s\right)\times 2
Multiply both sides of the equation by 5.
20s^{2}=\left(3s-3w-4\times 2s\right)\times 2
Use the distributive property to multiply 3 by s-w.
20s^{2}=\left(3s-3w-8s\right)\times 2
Multiply 4 and 2 to get 8.
20s^{2}=\left(-5s-3w\right)\times 2
Combine 3s and -8s to get -5s.
20s^{2}=-10s-6w
Use the distributive property to multiply -5s-3w by 2.
-10s-6w=20s^{2}
Swap sides so that all variable terms are on the left hand side.
-6w=20s^{2}+10s
Add 10s to both sides.
\frac{-6w}{-6}=\frac{10s\left(2s+1\right)}{-6}
Divide both sides by -6.
w=\frac{10s\left(2s+1\right)}{-6}
Dividing by -6 undoes the multiplication by -6.
w=-\frac{5s\left(2s+1\right)}{3}
Divide 10s\left(1+2s\right) by -6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}