Solve for j
j=\frac{3k}{2}-\frac{s}{4}-\frac{1}{8}i
Solve for k
k=\frac{s}{6}+\frac{2j}{3}+\frac{1}{12}i
Share
Copied to clipboard
2i+16j-24k=-4s
Subtract 4s from both sides. Anything subtracted from zero gives its negation.
16j-24k=-4s-2i
Subtract 2i from both sides.
16j=-4s-2i+24k
Add 24k to both sides.
16j=-2i+24k-4s
The equation is in standard form.
\frac{16j}{16}=\frac{-2i+24k-4s}{16}
Divide both sides by 16.
j=\frac{-2i+24k-4s}{16}
Dividing by 16 undoes the multiplication by 16.
j=\frac{3k}{2}-\frac{s}{4}-\frac{1}{8}i
Divide -4s-2i+24k by 16.
2i+16j-24k=-4s
Subtract 4s from both sides. Anything subtracted from zero gives its negation.
16j-24k=-4s-2i
Subtract 2i from both sides.
-24k=-4s-2i-16j
Subtract 16j from both sides.
-24k=-2i-16j-4s
The equation is in standard form.
\frac{-24k}{-24}=\frac{-2i-16j-4s}{-24}
Divide both sides by -24.
k=\frac{-2i-16j-4s}{-24}
Dividing by -24 undoes the multiplication by -24.
k=\frac{s}{6}+\frac{2j}{3}+\frac{1}{12}i
Divide -4s-2i-16j by -24.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}