Solve for r
r=-\frac{9t}{4}-3s
Solve for s
s=-\frac{r}{3}-\frac{3t}{4}
Share
Copied to clipboard
4r+9t=-12s
Subtract 12s from both sides. Anything subtracted from zero gives its negation.
4r=-12s-9t
Subtract 9t from both sides.
\frac{4r}{4}=\frac{-12s-9t}{4}
Divide both sides by 4.
r=\frac{-12s-9t}{4}
Dividing by 4 undoes the multiplication by 4.
r=-\frac{9t}{4}-3s
Divide -12s-9t by 4.
12s+9t=-4r
Subtract 4r from both sides. Anything subtracted from zero gives its negation.
12s=-4r-9t
Subtract 9t from both sides.
\frac{12s}{12}=\frac{-4r-9t}{12}
Divide both sides by 12.
s=\frac{-4r-9t}{12}
Dividing by 12 undoes the multiplication by 12.
s=-\frac{r}{3}-\frac{3t}{4}
Divide -4r-9t by 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}