Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

4\left(p^{2}+4p\right)
Factor out 4.
p\left(p+4\right)
Consider p^{2}+4p. Factor out p.
4p\left(p+4\right)
Rewrite the complete factored expression.
4p^{2}+16p=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
p=\frac{-16±\sqrt{16^{2}}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
p=\frac{-16±16}{2\times 4}
Take the square root of 16^{2}.
p=\frac{-16±16}{8}
Multiply 2 times 4.
p=\frac{0}{8}
Now solve the equation p=\frac{-16±16}{8} when ± is plus. Add -16 to 16.
p=0
Divide 0 by 8.
p=-\frac{32}{8}
Now solve the equation p=\frac{-16±16}{8} when ± is minus. Subtract 16 from -16.
p=-4
Divide -32 by 8.
4p^{2}+16p=4p\left(p-\left(-4\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and -4 for x_{2}.
4p^{2}+16p=4p\left(p+4\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.