Solve for m
m = \frac{5 \sqrt{2} + 1}{2} \approx 4.035533906
m=\frac{1-5\sqrt{2}}{2}\approx -3.035533906
Share
Copied to clipboard
4m^{2}-4m=49
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
4m^{2}-4m-49=49-49
Subtract 49 from both sides of the equation.
4m^{2}-4m-49=0
Subtracting 49 from itself leaves 0.
m=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 4\left(-49\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -4 for b, and -49 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-4\right)±\sqrt{16-4\times 4\left(-49\right)}}{2\times 4}
Square -4.
m=\frac{-\left(-4\right)±\sqrt{16-16\left(-49\right)}}{2\times 4}
Multiply -4 times 4.
m=\frac{-\left(-4\right)±\sqrt{16+784}}{2\times 4}
Multiply -16 times -49.
m=\frac{-\left(-4\right)±\sqrt{800}}{2\times 4}
Add 16 to 784.
m=\frac{-\left(-4\right)±20\sqrt{2}}{2\times 4}
Take the square root of 800.
m=\frac{4±20\sqrt{2}}{2\times 4}
The opposite of -4 is 4.
m=\frac{4±20\sqrt{2}}{8}
Multiply 2 times 4.
m=\frac{20\sqrt{2}+4}{8}
Now solve the equation m=\frac{4±20\sqrt{2}}{8} when ± is plus. Add 4 to 20\sqrt{2}.
m=\frac{5\sqrt{2}+1}{2}
Divide 4+20\sqrt{2} by 8.
m=\frac{4-20\sqrt{2}}{8}
Now solve the equation m=\frac{4±20\sqrt{2}}{8} when ± is minus. Subtract 20\sqrt{2} from 4.
m=\frac{1-5\sqrt{2}}{2}
Divide 4-20\sqrt{2} by 8.
m=\frac{5\sqrt{2}+1}{2} m=\frac{1-5\sqrt{2}}{2}
The equation is now solved.
4m^{2}-4m=49
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4m^{2}-4m}{4}=\frac{49}{4}
Divide both sides by 4.
m^{2}+\left(-\frac{4}{4}\right)m=\frac{49}{4}
Dividing by 4 undoes the multiplication by 4.
m^{2}-m=\frac{49}{4}
Divide -4 by 4.
m^{2}-m+\left(-\frac{1}{2}\right)^{2}=\frac{49}{4}+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-m+\frac{1}{4}=\frac{49+1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
m^{2}-m+\frac{1}{4}=\frac{25}{2}
Add \frac{49}{4} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(m-\frac{1}{2}\right)^{2}=\frac{25}{2}
Factor m^{2}-m+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-\frac{1}{2}\right)^{2}}=\sqrt{\frac{25}{2}}
Take the square root of both sides of the equation.
m-\frac{1}{2}=\frac{5\sqrt{2}}{2} m-\frac{1}{2}=-\frac{5\sqrt{2}}{2}
Simplify.
m=\frac{5\sqrt{2}+1}{2} m=\frac{1-5\sqrt{2}}{2}
Add \frac{1}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}