Skip to main content
Solve for m
Tick mark Image

Similar Problems from Web Search

Share

4m^{2}-3m=4
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
4m^{2}-3m-4=4-4
Subtract 4 from both sides of the equation.
4m^{2}-3m-4=0
Subtracting 4 from itself leaves 0.
m=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 4\left(-4\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -3 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-3\right)±\sqrt{9-4\times 4\left(-4\right)}}{2\times 4}
Square -3.
m=\frac{-\left(-3\right)±\sqrt{9-16\left(-4\right)}}{2\times 4}
Multiply -4 times 4.
m=\frac{-\left(-3\right)±\sqrt{9+64}}{2\times 4}
Multiply -16 times -4.
m=\frac{-\left(-3\right)±\sqrt{73}}{2\times 4}
Add 9 to 64.
m=\frac{3±\sqrt{73}}{2\times 4}
The opposite of -3 is 3.
m=\frac{3±\sqrt{73}}{8}
Multiply 2 times 4.
m=\frac{\sqrt{73}+3}{8}
Now solve the equation m=\frac{3±\sqrt{73}}{8} when ± is plus. Add 3 to \sqrt{73}.
m=\frac{3-\sqrt{73}}{8}
Now solve the equation m=\frac{3±\sqrt{73}}{8} when ± is minus. Subtract \sqrt{73} from 3.
m=\frac{\sqrt{73}+3}{8} m=\frac{3-\sqrt{73}}{8}
The equation is now solved.
4m^{2}-3m=4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4m^{2}-3m}{4}=\frac{4}{4}
Divide both sides by 4.
m^{2}-\frac{3}{4}m=\frac{4}{4}
Dividing by 4 undoes the multiplication by 4.
m^{2}-\frac{3}{4}m=1
Divide 4 by 4.
m^{2}-\frac{3}{4}m+\left(-\frac{3}{8}\right)^{2}=1+\left(-\frac{3}{8}\right)^{2}
Divide -\frac{3}{4}, the coefficient of the x term, by 2 to get -\frac{3}{8}. Then add the square of -\frac{3}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-\frac{3}{4}m+\frac{9}{64}=1+\frac{9}{64}
Square -\frac{3}{8} by squaring both the numerator and the denominator of the fraction.
m^{2}-\frac{3}{4}m+\frac{9}{64}=\frac{73}{64}
Add 1 to \frac{9}{64}.
\left(m-\frac{3}{8}\right)^{2}=\frac{73}{64}
Factor m^{2}-\frac{3}{4}m+\frac{9}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-\frac{3}{8}\right)^{2}}=\sqrt{\frac{73}{64}}
Take the square root of both sides of the equation.
m-\frac{3}{8}=\frac{\sqrt{73}}{8} m-\frac{3}{8}=-\frac{\sqrt{73}}{8}
Simplify.
m=\frac{\sqrt{73}+3}{8} m=\frac{3-\sqrt{73}}{8}
Add \frac{3}{8} to both sides of the equation.