Solve for k
k=\frac{-1+\sqrt{15}i}{8}\approx -0.125+0.484122918i
k=\frac{-\sqrt{15}i-1}{8}\approx -0.125-0.484122918i
Share
Copied to clipboard
4k^{2}-4k-4+5k=-5
Add 5k to both sides.
4k^{2}+k-4=-5
Combine -4k and 5k to get k.
4k^{2}+k-4+5=0
Add 5 to both sides.
4k^{2}+k+1=0
Add -4 and 5 to get 1.
k=\frac{-1±\sqrt{1^{2}-4\times 4}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 1 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-1±\sqrt{1-4\times 4}}{2\times 4}
Square 1.
k=\frac{-1±\sqrt{1-16}}{2\times 4}
Multiply -4 times 4.
k=\frac{-1±\sqrt{-15}}{2\times 4}
Add 1 to -16.
k=\frac{-1±\sqrt{15}i}{2\times 4}
Take the square root of -15.
k=\frac{-1±\sqrt{15}i}{8}
Multiply 2 times 4.
k=\frac{-1+\sqrt{15}i}{8}
Now solve the equation k=\frac{-1±\sqrt{15}i}{8} when ± is plus. Add -1 to i\sqrt{15}.
k=\frac{-\sqrt{15}i-1}{8}
Now solve the equation k=\frac{-1±\sqrt{15}i}{8} when ± is minus. Subtract i\sqrt{15} from -1.
k=\frac{-1+\sqrt{15}i}{8} k=\frac{-\sqrt{15}i-1}{8}
The equation is now solved.
4k^{2}-4k-4+5k=-5
Add 5k to both sides.
4k^{2}+k-4=-5
Combine -4k and 5k to get k.
4k^{2}+k=-5+4
Add 4 to both sides.
4k^{2}+k=-1
Add -5 and 4 to get -1.
\frac{4k^{2}+k}{4}=-\frac{1}{4}
Divide both sides by 4.
k^{2}+\frac{1}{4}k=-\frac{1}{4}
Dividing by 4 undoes the multiplication by 4.
k^{2}+\frac{1}{4}k+\left(\frac{1}{8}\right)^{2}=-\frac{1}{4}+\left(\frac{1}{8}\right)^{2}
Divide \frac{1}{4}, the coefficient of the x term, by 2 to get \frac{1}{8}. Then add the square of \frac{1}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
k^{2}+\frac{1}{4}k+\frac{1}{64}=-\frac{1}{4}+\frac{1}{64}
Square \frac{1}{8} by squaring both the numerator and the denominator of the fraction.
k^{2}+\frac{1}{4}k+\frac{1}{64}=-\frac{15}{64}
Add -\frac{1}{4} to \frac{1}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(k+\frac{1}{8}\right)^{2}=-\frac{15}{64}
Factor k^{2}+\frac{1}{4}k+\frac{1}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k+\frac{1}{8}\right)^{2}}=\sqrt{-\frac{15}{64}}
Take the square root of both sides of the equation.
k+\frac{1}{8}=\frac{\sqrt{15}i}{8} k+\frac{1}{8}=-\frac{\sqrt{15}i}{8}
Simplify.
k=\frac{-1+\sqrt{15}i}{8} k=\frac{-\sqrt{15}i-1}{8}
Subtract \frac{1}{8} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}