Solve for j
j=\frac{1}{4}=0.25
j=7
Share
Copied to clipboard
4j^{2}-\left(-7\right)=29j
Subtract -7 from both sides.
4j^{2}+7=29j
The opposite of -7 is 7.
4j^{2}+7-29j=0
Subtract 29j from both sides.
4j^{2}-29j+7=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-29 ab=4\times 7=28
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 4j^{2}+aj+bj+7. To find a and b, set up a system to be solved.
-1,-28 -2,-14 -4,-7
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 28.
-1-28=-29 -2-14=-16 -4-7=-11
Calculate the sum for each pair.
a=-28 b=-1
The solution is the pair that gives sum -29.
\left(4j^{2}-28j\right)+\left(-j+7\right)
Rewrite 4j^{2}-29j+7 as \left(4j^{2}-28j\right)+\left(-j+7\right).
4j\left(j-7\right)-\left(j-7\right)
Factor out 4j in the first and -1 in the second group.
\left(j-7\right)\left(4j-1\right)
Factor out common term j-7 by using distributive property.
j=7 j=\frac{1}{4}
To find equation solutions, solve j-7=0 and 4j-1=0.
4j^{2}-\left(-7\right)=29j
Subtract -7 from both sides.
4j^{2}+7=29j
The opposite of -7 is 7.
4j^{2}+7-29j=0
Subtract 29j from both sides.
4j^{2}-29j+7=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
j=\frac{-\left(-29\right)±\sqrt{\left(-29\right)^{2}-4\times 4\times 7}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -29 for b, and 7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
j=\frac{-\left(-29\right)±\sqrt{841-4\times 4\times 7}}{2\times 4}
Square -29.
j=\frac{-\left(-29\right)±\sqrt{841-16\times 7}}{2\times 4}
Multiply -4 times 4.
j=\frac{-\left(-29\right)±\sqrt{841-112}}{2\times 4}
Multiply -16 times 7.
j=\frac{-\left(-29\right)±\sqrt{729}}{2\times 4}
Add 841 to -112.
j=\frac{-\left(-29\right)±27}{2\times 4}
Take the square root of 729.
j=\frac{29±27}{2\times 4}
The opposite of -29 is 29.
j=\frac{29±27}{8}
Multiply 2 times 4.
j=\frac{56}{8}
Now solve the equation j=\frac{29±27}{8} when ± is plus. Add 29 to 27.
j=7
Divide 56 by 8.
j=\frac{2}{8}
Now solve the equation j=\frac{29±27}{8} when ± is minus. Subtract 27 from 29.
j=\frac{1}{4}
Reduce the fraction \frac{2}{8} to lowest terms by extracting and canceling out 2.
j=7 j=\frac{1}{4}
The equation is now solved.
4j^{2}-29j=-7
Subtract 29j from both sides.
\frac{4j^{2}-29j}{4}=-\frac{7}{4}
Divide both sides by 4.
j^{2}-\frac{29}{4}j=-\frac{7}{4}
Dividing by 4 undoes the multiplication by 4.
j^{2}-\frac{29}{4}j+\left(-\frac{29}{8}\right)^{2}=-\frac{7}{4}+\left(-\frac{29}{8}\right)^{2}
Divide -\frac{29}{4}, the coefficient of the x term, by 2 to get -\frac{29}{8}. Then add the square of -\frac{29}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
j^{2}-\frac{29}{4}j+\frac{841}{64}=-\frac{7}{4}+\frac{841}{64}
Square -\frac{29}{8} by squaring both the numerator and the denominator of the fraction.
j^{2}-\frac{29}{4}j+\frac{841}{64}=\frac{729}{64}
Add -\frac{7}{4} to \frac{841}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(j-\frac{29}{8}\right)^{2}=\frac{729}{64}
Factor j^{2}-\frac{29}{4}j+\frac{841}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(j-\frac{29}{8}\right)^{2}}=\sqrt{\frac{729}{64}}
Take the square root of both sides of the equation.
j-\frac{29}{8}=\frac{27}{8} j-\frac{29}{8}=-\frac{27}{8}
Simplify.
j=7 j=\frac{1}{4}
Add \frac{29}{8} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}