Solve for z
z=-\frac{36}{125}-\frac{52}{125}i=-0.288-0.416i
Share
Copied to clipboard
4i-4+5iz-7z+z\left(9+6i\right)=0
Use the distributive property to multiply z by 5i-7.
4i-4+\left(-7+5i\right)z+z\left(9+6i\right)=0
Combine 5iz and -7z to get \left(-7+5i\right)z.
4i-4+\left(2+11i\right)z=0
Combine \left(-7+5i\right)z and z\left(9+6i\right) to get \left(2+11i\right)z.
-4+\left(2+11i\right)z=-4i
Subtract 4i from both sides. Anything subtracted from zero gives its negation.
\left(2+11i\right)z=-4i+4
Add 4 to both sides.
\left(2+11i\right)z=4-4i
The equation is in standard form.
\frac{\left(2+11i\right)z}{2+11i}=\frac{4-4i}{2+11i}
Divide both sides by 2+11i.
z=\frac{4-4i}{2+11i}
Dividing by 2+11i undoes the multiplication by 2+11i.
z=-\frac{36}{125}-\frac{52}{125}i
Divide 4-4i by 2+11i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}