Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

4\left(-1\right)+12i+9
Calculate i to the power of 2 and get -1.
-4+12i+9
Multiply 4 and -1 to get -4.
5+12i
Do the additions.
x ^ 2 +3x +\frac{9}{4} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 4
r + s = -3 rs = \frac{9}{4}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{3}{2} - u s = -\frac{3}{2} + u
Two numbers r and s sum up to -3 exactly when the average of the two numbers is \frac{1}{2}*-3 = -\frac{3}{2}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{3}{2} - u) (-\frac{3}{2} + u) = \frac{9}{4}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{9}{4}
\frac{9}{4} - u^2 = \frac{9}{4}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{9}{4}-\frac{9}{4} = 0
Simplify the expression by subtracting \frac{9}{4} on both sides
u^2 = 0 u = 0
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r = s = -\frac{3}{2} = -1.500
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Re(4\left(-1\right)+12i+9)
Calculate i to the power of 2 and get -1.
Re(-4+12i+9)
Multiply 4 and -1 to get -4.
Re(5+12i)
Do the additions in -4+12i+9.
5
The real part of 5+12i is 5.