Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

c\left(4c-15\right)
Factor out c.
4c^{2}-15c=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
c=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
c=\frac{-\left(-15\right)±15}{2\times 4}
Take the square root of \left(-15\right)^{2}.
c=\frac{15±15}{2\times 4}
The opposite of -15 is 15.
c=\frac{15±15}{8}
Multiply 2 times 4.
c=\frac{30}{8}
Now solve the equation c=\frac{15±15}{8} when ± is plus. Add 15 to 15.
c=\frac{15}{4}
Reduce the fraction \frac{30}{8} to lowest terms by extracting and canceling out 2.
c=\frac{0}{8}
Now solve the equation c=\frac{15±15}{8} when ± is minus. Subtract 15 from 15.
c=0
Divide 0 by 8.
4c^{2}-15c=4\left(c-\frac{15}{4}\right)c
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{15}{4} for x_{1} and 0 for x_{2}.
4c^{2}-15c=4\times \frac{4c-15}{4}c
Subtract \frac{15}{4} from c by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
4c^{2}-15c=\left(4c-15\right)c
Cancel out 4, the greatest common factor in 4 and 4.