Solve for a
a=\frac{4\left(b+25\right)}{3}
Solve for b
b=\frac{3a}{4}-25
Share
Copied to clipboard
4b+100-a-2a=0
Subtract 2a from both sides.
4b+100-3a=0
Combine -a and -2a to get -3a.
100-3a=-4b
Subtract 4b from both sides. Anything subtracted from zero gives its negation.
-3a=-4b-100
Subtract 100 from both sides.
\frac{-3a}{-3}=\frac{-4b-100}{-3}
Divide both sides by -3.
a=\frac{-4b-100}{-3}
Dividing by -3 undoes the multiplication by -3.
a=\frac{4b+100}{3}
Divide -4b-100 by -3.
4b-a=2a-100
Subtract 100 from both sides.
4b=2a-100+a
Add a to both sides.
4b=3a-100
Combine 2a and a to get 3a.
\frac{4b}{4}=\frac{3a-100}{4}
Divide both sides by 4.
b=\frac{3a-100}{4}
Dividing by 4 undoes the multiplication by 4.
b=\frac{3a}{4}-25
Divide 3a-100 by 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}