Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Similar Problems from Web Search

Share

\frac{4\left(-3\right)a}{2b^{3}}ab^{3}
Express 4\times \frac{-3a}{2b^{3}} as a single fraction.
\frac{-3\times 2a}{b^{3}}ab^{3}
Cancel out 2 in both numerator and denominator.
\frac{-6a}{b^{3}}ab^{3}
Multiply -3 and 2 to get -6.
\frac{-6aa}{b^{3}}b^{3}
Express \frac{-6a}{b^{3}}a as a single fraction.
-6aa
Cancel out b^{3} and b^{3}.
-6a^{2}
Multiply a and a to get a^{2}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{4\left(-3\right)a}{2b^{3}}ab^{3})
Express 4\times \frac{-3a}{2b^{3}} as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{-3\times 2a}{b^{3}}ab^{3})
Cancel out 2 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{-6a}{b^{3}}ab^{3})
Multiply -3 and 2 to get -6.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{-6aa}{b^{3}}b^{3})
Express \frac{-6a}{b^{3}}a as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}a}(-6aa)
Cancel out b^{3} and b^{3}.
\frac{\mathrm{d}}{\mathrm{d}a}(-6a^{2})
Multiply a and a to get a^{2}.
2\left(-6\right)a^{2-1}
The derivative of ax^{n} is nax^{n-1}.
-12a^{2-1}
Multiply 2 times -6.
-12a^{1}
Subtract 1 from 2.
-12a
For any term t, t^{1}=t.