Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

-a^{2}+4a=3\sqrt{3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-a^{2}+4a-3\sqrt{3}=3\sqrt{3}-3\sqrt{3}
Subtract 3\sqrt{3} from both sides of the equation.
-a^{2}+4a-3\sqrt{3}=0
Subtracting 3\sqrt{3} from itself leaves 0.
a=\frac{-4±\sqrt{4^{2}-4\left(-1\right)\left(-3\sqrt{3}\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 4 for b, and -3\sqrt{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-4±\sqrt{16-4\left(-1\right)\left(-3\sqrt{3}\right)}}{2\left(-1\right)}
Square 4.
a=\frac{-4±\sqrt{16+4\left(-3\sqrt{3}\right)}}{2\left(-1\right)}
Multiply -4 times -1.
a=\frac{-4±\sqrt{16-12\sqrt{3}}}{2\left(-1\right)}
Multiply 4 times -3\sqrt{3}.
a=\frac{-4±2i\sqrt{-\left(4-3\sqrt{3}\right)}}{2\left(-1\right)}
Take the square root of 16-12\sqrt{3}.
a=\frac{-4±2i\sqrt{-\left(4-3\sqrt{3}\right)}}{-2}
Multiply 2 times -1.
a=\frac{-4+2i\sqrt{3\sqrt{3}-4}}{-2}
Now solve the equation a=\frac{-4±2i\sqrt{-\left(4-3\sqrt{3}\right)}}{-2} when ± is plus. Add -4 to 2i\sqrt{-\left(4-3\sqrt{3}\right)}.
a=-i\sqrt{3\sqrt{3}-4}+2
Divide -4+2i\sqrt{-4+3\sqrt{3}} by -2.
a=\frac{-2i\sqrt{3\sqrt{3}-4}-4}{-2}
Now solve the equation a=\frac{-4±2i\sqrt{-\left(4-3\sqrt{3}\right)}}{-2} when ± is minus. Subtract 2i\sqrt{-\left(4-3\sqrt{3}\right)} from -4.
a=2+i\sqrt{3\sqrt{3}-4}
Divide -4-2i\sqrt{-4+3\sqrt{3}} by -2.
a=-i\sqrt{3\sqrt{3}-4}+2 a=2+i\sqrt{3\sqrt{3}-4}
The equation is now solved.
-a^{2}+4a=3\sqrt{3}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-a^{2}+4a}{-1}=\frac{3\sqrt{3}}{-1}
Divide both sides by -1.
a^{2}+\frac{4}{-1}a=\frac{3\sqrt{3}}{-1}
Dividing by -1 undoes the multiplication by -1.
a^{2}-4a=\frac{3\sqrt{3}}{-1}
Divide 4 by -1.
a^{2}-4a=-3\sqrt{3}
Divide 3\sqrt{3} by -1.
a^{2}-4a+\left(-2\right)^{2}=-3\sqrt{3}+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-4a+4=-3\sqrt{3}+4
Square -2.
a^{2}-4a+4=4-3\sqrt{3}
Add -3\sqrt{3} to 4.
\left(a-2\right)^{2}=4-3\sqrt{3}
Factor a^{2}-4a+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-2\right)^{2}}=\sqrt{4-3\sqrt{3}}
Take the square root of both sides of the equation.
a-2=i\sqrt{-\left(4-3\sqrt{3}\right)} a-2=-i\sqrt{3\sqrt{3}-4}
Simplify.
a=2+i\sqrt{3\sqrt{3}-4} a=-i\sqrt{3\sqrt{3}-4}+2
Add 2 to both sides of the equation.