Evaluate
20a^{4}
Differentiate w.r.t. a
80a^{3}
Share
Copied to clipboard
4^{1}a^{1}a^{1}\times 5^{1}a^{1}a^{1}
Use the rules of exponents to simplify the expression.
4^{1}\times 5^{1}a^{1}a^{1}a^{1}a^{1}
Use the Commutative Property of Multiplication.
4^{1}\times 5^{1}a^{1+1}a^{1+1}
To multiply powers of the same base, add their exponents.
4^{1}\times 5^{1}a^{2}a^{1+1}
Add the exponents 1 and 1.
4^{1}\times 5^{1}a^{2}a^{2}
Add the exponents 1 and 1.
20a^{2}a^{2}
Multiply 4 times 5.
\frac{\mathrm{d}}{\mathrm{d}a}(4a^{2}\times 5aa)
Multiply a and a to get a^{2}.
\frac{\mathrm{d}}{\mathrm{d}a}(4a^{3}\times 5a)
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{\mathrm{d}}{\mathrm{d}a}(4a^{4}\times 5)
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
\frac{\mathrm{d}}{\mathrm{d}a}(20a^{4})
Multiply 4 and 5 to get 20.
4\times 20a^{4-1}
The derivative of ax^{n} is nax^{n-1}.
80a^{4-1}
Multiply 4 times 20.
80a^{3}
Subtract 1 from 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}