Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

4a^{8}-53b^{4}a^{4}+49b^{8}
Consider 4a^{8}-53a^{4}b^{4}+49b^{8} as a polynomial over variable a.
\left(4a^{4}-49b^{4}\right)\left(a^{4}-b^{4}\right)
Find one factor of the form ka^{m}+n, where ka^{m} divides the monomial with the highest power 4a^{8} and n divides the constant factor 49b^{8}. One such factor is 4a^{4}-49b^{4}. Factor the polynomial by dividing it by this factor.
\left(2a^{2}-7b^{2}\right)\left(2a^{2}+7b^{2}\right)
Consider 4a^{4}-49b^{4}. Rewrite 4a^{4}-49b^{4} as \left(2a^{2}\right)^{2}-\left(7b^{2}\right)^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(a^{2}-b^{2}\right)\left(a^{2}+b^{2}\right)
Consider a^{4}-b^{4}. Rewrite a^{4}-b^{4} as \left(a^{2}\right)^{2}-\left(b^{2}\right)^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(a-b\right)\left(a+b\right)
Consider a^{2}-b^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(a-b\right)\left(a+b\right)\left(a^{2}+b^{2}\right)\left(2a^{2}-7b^{2}\right)\left(2a^{2}+7b^{2}\right)
Rewrite the complete factored expression.