Factor
\left(a-b\right)\left(a+b\right)\left(2a^{2}-7b^{2}\right)\left(2a^{2}+7b^{2}\right)\left(a^{2}+b^{2}\right)
Evaluate
4a^{8}+49b^{8}-53\left(ab\right)^{4}
Share
Copied to clipboard
4a^{8}-53b^{4}a^{4}+49b^{8}
Consider 4a^{8}-53a^{4}b^{4}+49b^{8} as a polynomial over variable a.
\left(4a^{4}-49b^{4}\right)\left(a^{4}-b^{4}\right)
Find one factor of the form ka^{m}+n, where ka^{m} divides the monomial with the highest power 4a^{8} and n divides the constant factor 49b^{8}. One such factor is 4a^{4}-49b^{4}. Factor the polynomial by dividing it by this factor.
\left(2a^{2}-7b^{2}\right)\left(2a^{2}+7b^{2}\right)
Consider 4a^{4}-49b^{4}. Rewrite 4a^{4}-49b^{4} as \left(2a^{2}\right)^{2}-\left(7b^{2}\right)^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(a^{2}-b^{2}\right)\left(a^{2}+b^{2}\right)
Consider a^{4}-b^{4}. Rewrite a^{4}-b^{4} as \left(a^{2}\right)^{2}-\left(b^{2}\right)^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(a-b\right)\left(a+b\right)
Consider a^{2}-b^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(a-b\right)\left(a+b\right)\left(a^{2}+b^{2}\right)\left(2a^{2}-7b^{2}\right)\left(2a^{2}+7b^{2}\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}