Factor
2\left(a-3\right)\left(a+3\right)\left(2a^{2}+1\right)
Evaluate
4a^{4}-34a^{2}-18
Share
Copied to clipboard
2\left(2a^{4}-17a^{2}-9\right)
Factor out 2.
\left(2a^{2}+1\right)\left(a^{2}-9\right)
Consider 2a^{4}-17a^{2}-9. Find one factor of the form ka^{m}+n, where ka^{m} divides the monomial with the highest power 2a^{4} and n divides the constant factor -9. One such factor is 2a^{2}+1. Factor the polynomial by dividing it by this factor.
\left(a-3\right)\left(a+3\right)
Consider a^{2}-9. Rewrite a^{2}-9 as a^{2}-3^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
2\left(2a^{2}+1\right)\left(a-3\right)\left(a+3\right)
Rewrite the complete factored expression. Polynomial 2a^{2}+1 is not factored since it does not have any rational roots.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}