Evaluate
4a\left(2a^{3}-2a^{2}+17a-12\right)
Expand
8a^{4}-8a^{3}+68a^{2}-48a
Share
Copied to clipboard
4a^{2}-8a\left(6-\left(8a-a^{2}+a^{3}\right)\right)
Use the distributive property to multiply a by 8-a+a^{2}.
4a^{2}-8a\left(6-8a+a^{2}-a^{3}\right)
To find the opposite of 8a-a^{2}+a^{3}, find the opposite of each term.
4a^{2}-48a+64a^{2}-8a^{3}+8a^{4}
Use the distributive property to multiply -8a by 6-8a+a^{2}-a^{3}.
68a^{2}-48a-8a^{3}+8a^{4}
Combine 4a^{2} and 64a^{2} to get 68a^{2}.
4a^{2}-8a\left(6-\left(8a-a^{2}+a^{3}\right)\right)
Use the distributive property to multiply a by 8-a+a^{2}.
4a^{2}-8a\left(6-8a+a^{2}-a^{3}\right)
To find the opposite of 8a-a^{2}+a^{3}, find the opposite of each term.
4a^{2}-48a+64a^{2}-8a^{3}+8a^{4}
Use the distributive property to multiply -8a by 6-8a+a^{2}-a^{3}.
68a^{2}-48a-8a^{3}+8a^{4}
Combine 4a^{2} and 64a^{2} to get 68a^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}