Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

4a^{2}-21a+4=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-\left(-21\right)±\sqrt{\left(-21\right)^{2}-4\times 4\times 4}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 4 for a, -21 for b, and 4 for c in the quadratic formula.
a=\frac{21±\sqrt{377}}{8}
Do the calculations.
a=\frac{\sqrt{377}+21}{8} a=\frac{21-\sqrt{377}}{8}
Solve the equation a=\frac{21±\sqrt{377}}{8} when ± is plus and when ± is minus.
4\left(a-\frac{\sqrt{377}+21}{8}\right)\left(a-\frac{21-\sqrt{377}}{8}\right)\geq 0
Rewrite the inequality by using the obtained solutions.
a-\frac{\sqrt{377}+21}{8}\leq 0 a-\frac{21-\sqrt{377}}{8}\leq 0
For the product to be ≥0, a-\frac{\sqrt{377}+21}{8} and a-\frac{21-\sqrt{377}}{8} have to be both ≤0 or both ≥0. Consider the case when a-\frac{\sqrt{377}+21}{8} and a-\frac{21-\sqrt{377}}{8} are both ≤0.
a\leq \frac{21-\sqrt{377}}{8}
The solution satisfying both inequalities is a\leq \frac{21-\sqrt{377}}{8}.
a-\frac{21-\sqrt{377}}{8}\geq 0 a-\frac{\sqrt{377}+21}{8}\geq 0
Consider the case when a-\frac{\sqrt{377}+21}{8} and a-\frac{21-\sqrt{377}}{8} are both ≥0.
a\geq \frac{\sqrt{377}+21}{8}
The solution satisfying both inequalities is a\geq \frac{\sqrt{377}+21}{8}.
a\leq \frac{21-\sqrt{377}}{8}\text{; }a\geq \frac{\sqrt{377}+21}{8}
The final solution is the union of the obtained solutions.