Solve for a
a = \frac{\sqrt{10} + 2}{3} \approx 1.72075922
a=\frac{2-\sqrt{10}}{3}\approx -0.387425887
Share
Copied to clipboard
4a-\left(-2\right)=3a^{2}
Subtract -2 from both sides.
4a+2=3a^{2}
The opposite of -2 is 2.
4a+2-3a^{2}=0
Subtract 3a^{2} from both sides.
-3a^{2}+4a+2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-4±\sqrt{4^{2}-4\left(-3\right)\times 2}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 4 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-4±\sqrt{16-4\left(-3\right)\times 2}}{2\left(-3\right)}
Square 4.
a=\frac{-4±\sqrt{16+12\times 2}}{2\left(-3\right)}
Multiply -4 times -3.
a=\frac{-4±\sqrt{16+24}}{2\left(-3\right)}
Multiply 12 times 2.
a=\frac{-4±\sqrt{40}}{2\left(-3\right)}
Add 16 to 24.
a=\frac{-4±2\sqrt{10}}{2\left(-3\right)}
Take the square root of 40.
a=\frac{-4±2\sqrt{10}}{-6}
Multiply 2 times -3.
a=\frac{2\sqrt{10}-4}{-6}
Now solve the equation a=\frac{-4±2\sqrt{10}}{-6} when ± is plus. Add -4 to 2\sqrt{10}.
a=\frac{2-\sqrt{10}}{3}
Divide -4+2\sqrt{10} by -6.
a=\frac{-2\sqrt{10}-4}{-6}
Now solve the equation a=\frac{-4±2\sqrt{10}}{-6} when ± is minus. Subtract 2\sqrt{10} from -4.
a=\frac{\sqrt{10}+2}{3}
Divide -4-2\sqrt{10} by -6.
a=\frac{2-\sqrt{10}}{3} a=\frac{\sqrt{10}+2}{3}
The equation is now solved.
4a-3a^{2}=-2
Subtract 3a^{2} from both sides.
-3a^{2}+4a=-2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3a^{2}+4a}{-3}=-\frac{2}{-3}
Divide both sides by -3.
a^{2}+\frac{4}{-3}a=-\frac{2}{-3}
Dividing by -3 undoes the multiplication by -3.
a^{2}-\frac{4}{3}a=-\frac{2}{-3}
Divide 4 by -3.
a^{2}-\frac{4}{3}a=\frac{2}{3}
Divide -2 by -3.
a^{2}-\frac{4}{3}a+\left(-\frac{2}{3}\right)^{2}=\frac{2}{3}+\left(-\frac{2}{3}\right)^{2}
Divide -\frac{4}{3}, the coefficient of the x term, by 2 to get -\frac{2}{3}. Then add the square of -\frac{2}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-\frac{4}{3}a+\frac{4}{9}=\frac{2}{3}+\frac{4}{9}
Square -\frac{2}{3} by squaring both the numerator and the denominator of the fraction.
a^{2}-\frac{4}{3}a+\frac{4}{9}=\frac{10}{9}
Add \frac{2}{3} to \frac{4}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(a-\frac{2}{3}\right)^{2}=\frac{10}{9}
Factor a^{2}-\frac{4}{3}a+\frac{4}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{2}{3}\right)^{2}}=\sqrt{\frac{10}{9}}
Take the square root of both sides of the equation.
a-\frac{2}{3}=\frac{\sqrt{10}}{3} a-\frac{2}{3}=-\frac{\sqrt{10}}{3}
Simplify.
a=\frac{\sqrt{10}+2}{3} a=\frac{2-\sqrt{10}}{3}
Add \frac{2}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}