Solve for E (complex solution)
\left\{\begin{matrix}E=-\frac{\left(y-9\right)\left(y-1\right)}{4X^{2}}\text{, }&X\neq 0\\E\in \mathrm{C}\text{, }&\left(y=1\text{ or }y=9\right)\text{ and }X=0\end{matrix}\right.
Solve for E
\left\{\begin{matrix}E=-\frac{\left(y-9\right)\left(y-1\right)}{4X^{2}}\text{, }&X\neq 0\\E\in \mathrm{R}\text{, }&\left(y=1\text{ or }y=9\right)\text{ and }X=0\end{matrix}\right.
Solve for X (complex solution)
\left\{\begin{matrix}X=-\frac{iE^{-\frac{1}{2}}\sqrt{y-9}\sqrt{y-1}}{2}\text{; }X=\frac{iE^{-\frac{1}{2}}\sqrt{y-9}\sqrt{y-1}}{2}\text{, }&E\neq 0\\X\in \mathrm{C}\text{, }&\left(y=1\text{ or }y=9\right)\text{ and }E=0\end{matrix}\right.
Solve for X
\left\{\begin{matrix}X=\frac{\sqrt{\frac{\left(1-y\right)\left(y-9\right)}{E}}}{2}\text{; }X=-\frac{\sqrt{\frac{\left(1-y\right)\left(y-9\right)}{E}}}{2}\text{, }&\left(y\leq 1\text{ and }E<0\right)\text{ or }\left(y\geq 9\text{ and }E<0\right)\text{ or }\left(y\leq 9\text{ and }y\geq 1\text{ and }E>0\right)\\X\in \mathrm{R}\text{, }&\left(y=1\text{ or }y=9\right)\text{ and }E=0\end{matrix}\right.
Graph
Share
Copied to clipboard
4EX^{2}+y^{2}-10y+25=16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-5\right)^{2}.
4EX^{2}-10y+25=16-y^{2}
Subtract y^{2} from both sides.
4EX^{2}+25=16-y^{2}+10y
Add 10y to both sides.
4EX^{2}=16-y^{2}+10y-25
Subtract 25 from both sides.
4EX^{2}=-9-y^{2}+10y
Subtract 25 from 16 to get -9.
4X^{2}E=-y^{2}+10y-9
The equation is in standard form.
\frac{4X^{2}E}{4X^{2}}=\frac{\left(1-y\right)\left(y-9\right)}{4X^{2}}
Divide both sides by 4X^{2}.
E=\frac{\left(1-y\right)\left(y-9\right)}{4X^{2}}
Dividing by 4X^{2} undoes the multiplication by 4X^{2}.
4EX^{2}+y^{2}-10y+25=16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-5\right)^{2}.
4EX^{2}-10y+25=16-y^{2}
Subtract y^{2} from both sides.
4EX^{2}+25=16-y^{2}+10y
Add 10y to both sides.
4EX^{2}=16-y^{2}+10y-25
Subtract 25 from both sides.
4EX^{2}=-9-y^{2}+10y
Subtract 25 from 16 to get -9.
4X^{2}E=-y^{2}+10y-9
The equation is in standard form.
\frac{4X^{2}E}{4X^{2}}=\frac{\left(1-y\right)\left(y-9\right)}{4X^{2}}
Divide both sides by 4X^{2}.
E=\frac{\left(1-y\right)\left(y-9\right)}{4X^{2}}
Dividing by 4X^{2} undoes the multiplication by 4X^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}