Solve for A
A=\frac{15}{MQ}
Q\neq 0\text{ and }M\neq 0
Solve for M
M=\frac{15}{AQ}
Q\neq 0\text{ and }A\neq 0
Share
Copied to clipboard
4AMQ=\frac{1}{2}\times 120
Subtract 30 from 150 to get 120.
4AMQ=60
Multiply \frac{1}{2} and 120 to get 60.
4MQA=60
The equation is in standard form.
\frac{4MQA}{4MQ}=\frac{60}{4MQ}
Divide both sides by 4MQ.
A=\frac{60}{4MQ}
Dividing by 4MQ undoes the multiplication by 4MQ.
A=\frac{15}{MQ}
Divide 60 by 4MQ.
4AMQ=\frac{1}{2}\times 120
Subtract 30 from 150 to get 120.
4AMQ=60
Multiply \frac{1}{2} and 120 to get 60.
4AQM=60
The equation is in standard form.
\frac{4AQM}{4AQ}=\frac{60}{4AQ}
Divide both sides by 4AQ.
M=\frac{60}{4AQ}
Dividing by 4AQ undoes the multiplication by 4AQ.
M=\frac{15}{AQ}
Divide 60 by 4AQ.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}