Solve for v
v=-w+\frac{1}{x}
x\neq 0
Solve for w
w=-v+\frac{1}{x}
x\neq 0
Graph
Share
Copied to clipboard
vx+3=4-wx
Swap sides so that all variable terms are on the left hand side.
vx=4-wx-3
Subtract 3 from both sides.
vx=1-wx
Subtract 3 from 4 to get 1.
xv=1-wx
The equation is in standard form.
\frac{xv}{x}=\frac{1-wx}{x}
Divide both sides by x.
v=\frac{1-wx}{x}
Dividing by x undoes the multiplication by x.
v=-w+\frac{1}{x}
Divide 1-wx by x.
-wx=vx+3-4
Subtract 4 from both sides.
-wx=vx-1
Subtract 4 from 3 to get -1.
\left(-x\right)w=vx-1
The equation is in standard form.
\frac{\left(-x\right)w}{-x}=\frac{vx-1}{-x}
Divide both sides by -x.
w=\frac{vx-1}{-x}
Dividing by -x undoes the multiplication by -x.
w=-v+\frac{1}{x}
Divide vx-1 by -x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}