Solve for a
a=-\frac{2\left(2x-3\right)}{1-x}
x\neq 1
Solve for x
x=-\frac{6-a}{a-4}
a\neq 4
Graph
Share
Copied to clipboard
\left(x-1\right)\times 4-a\left(x-1\right)=2
Multiply both sides of the equation by x-1.
4x-4-a\left(x-1\right)=2
Use the distributive property to multiply x-1 by 4.
4x-4-ax+a=2
Use the distributive property to multiply -a by x-1.
-4-ax+a=2-4x
Subtract 4x from both sides.
-ax+a=2-4x+4
Add 4 to both sides.
-ax+a=6-4x
Add 2 and 4 to get 6.
\left(-x+1\right)a=6-4x
Combine all terms containing a.
\left(1-x\right)a=6-4x
The equation is in standard form.
\frac{\left(1-x\right)a}{1-x}=\frac{6-4x}{1-x}
Divide both sides by -x+1.
a=\frac{6-4x}{1-x}
Dividing by -x+1 undoes the multiplication by -x+1.
a=\frac{2\left(3-2x\right)}{1-x}
Divide 6-4x by -x+1.
\left(x-1\right)\times 4-a\left(x-1\right)=2
Variable x cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by x-1.
4x-4-a\left(x-1\right)=2
Use the distributive property to multiply x-1 by 4.
4x-4-ax+a=2
Use the distributive property to multiply -a by x-1.
4x-ax+a=2+4
Add 4 to both sides.
4x-ax+a=6
Add 2 and 4 to get 6.
4x-ax=6-a
Subtract a from both sides.
\left(4-a\right)x=6-a
Combine all terms containing x.
\frac{\left(4-a\right)x}{4-a}=\frac{6-a}{4-a}
Divide both sides by 4-a.
x=\frac{6-a}{4-a}
Dividing by 4-a undoes the multiplication by 4-a.
x=\frac{6-a}{4-a}\text{, }x\neq 1
Variable x cannot be equal to 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}