Solve for k
k = \frac{\sqrt{5}}{2} \approx 1.118033989
k = -\frac{\sqrt{5}}{2} \approx -1.118033989
Share
Copied to clipboard
4-4k+2=\left(2k-1\right)^{2}
Use the distributive property to multiply -2 by 2k-1.
6-4k=\left(2k-1\right)^{2}
Add 4 and 2 to get 6.
6-4k=4k^{2}-4k+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2k-1\right)^{2}.
6-4k-4k^{2}=-4k+1
Subtract 4k^{2} from both sides.
6-4k-4k^{2}+4k=1
Add 4k to both sides.
6-4k^{2}=1
Combine -4k and 4k to get 0.
-4k^{2}=1-6
Subtract 6 from both sides.
-4k^{2}=-5
Subtract 6 from 1 to get -5.
k^{2}=\frac{-5}{-4}
Divide both sides by -4.
k^{2}=\frac{5}{4}
Fraction \frac{-5}{-4} can be simplified to \frac{5}{4} by removing the negative sign from both the numerator and the denominator.
k=\frac{\sqrt{5}}{2} k=-\frac{\sqrt{5}}{2}
Take the square root of both sides of the equation.
4-4k+2=\left(2k-1\right)^{2}
Use the distributive property to multiply -2 by 2k-1.
6-4k=\left(2k-1\right)^{2}
Add 4 and 2 to get 6.
6-4k=4k^{2}-4k+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2k-1\right)^{2}.
6-4k-4k^{2}=-4k+1
Subtract 4k^{2} from both sides.
6-4k-4k^{2}+4k=1
Add 4k to both sides.
6-4k^{2}=1
Combine -4k and 4k to get 0.
6-4k^{2}-1=0
Subtract 1 from both sides.
5-4k^{2}=0
Subtract 1 from 6 to get 5.
-4k^{2}+5=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
k=\frac{0±\sqrt{0^{2}-4\left(-4\right)\times 5}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 0 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{0±\sqrt{-4\left(-4\right)\times 5}}{2\left(-4\right)}
Square 0.
k=\frac{0±\sqrt{16\times 5}}{2\left(-4\right)}
Multiply -4 times -4.
k=\frac{0±\sqrt{80}}{2\left(-4\right)}
Multiply 16 times 5.
k=\frac{0±4\sqrt{5}}{2\left(-4\right)}
Take the square root of 80.
k=\frac{0±4\sqrt{5}}{-8}
Multiply 2 times -4.
k=-\frac{\sqrt{5}}{2}
Now solve the equation k=\frac{0±4\sqrt{5}}{-8} when ± is plus.
k=\frac{\sqrt{5}}{2}
Now solve the equation k=\frac{0±4\sqrt{5}}{-8} when ± is minus.
k=-\frac{\sqrt{5}}{2} k=\frac{\sqrt{5}}{2}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}