Evaluate
6u
Expand
6u
Share
Copied to clipboard
4-\left(2^{2}-u^{2}\right)-u\left(u-6\right)
Consider \left(2+u\right)\left(2-u\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4-\left(4-u^{2}\right)-u\left(u-6\right)
Calculate 2 to the power of 2 and get 4.
4-4-\left(-u^{2}\right)-u\left(u-6\right)
To find the opposite of 4-u^{2}, find the opposite of each term.
4-4+u^{2}-u\left(u-6\right)
The opposite of -u^{2} is u^{2}.
u^{2}-u\left(u-6\right)
Subtract 4 from 4 to get 0.
u^{2}-\left(u^{2}-6u\right)
Use the distributive property to multiply u by u-6.
u^{2}-u^{2}-\left(-6u\right)
To find the opposite of u^{2}-6u, find the opposite of each term.
u^{2}-u^{2}+6u
The opposite of -6u is 6u.
6u
Combine u^{2} and -u^{2} to get 0.
4-\left(2^{2}-u^{2}\right)-u\left(u-6\right)
Consider \left(2+u\right)\left(2-u\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4-\left(4-u^{2}\right)-u\left(u-6\right)
Calculate 2 to the power of 2 and get 4.
4-4-\left(-u^{2}\right)-u\left(u-6\right)
To find the opposite of 4-u^{2}, find the opposite of each term.
4-4+u^{2}-u\left(u-6\right)
The opposite of -u^{2} is u^{2}.
u^{2}-u\left(u-6\right)
Subtract 4 from 4 to get 0.
u^{2}-\left(u^{2}-6u\right)
Use the distributive property to multiply u by u-6.
u^{2}-u^{2}-\left(-6u\right)
To find the opposite of u^{2}-6u, find the opposite of each term.
u^{2}-u^{2}+6u
The opposite of -6u is 6u.
6u
Combine u^{2} and -u^{2} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}