Skip to main content
Verify
false
Tick mark Image

Similar Problems from Web Search

Share

4-\left(1-\left(2\sqrt{3}\right)^{2}\right)-\left(2\sqrt{3}-1\right)^{2}=4\sqrt{3}
Consider \left(1-2\sqrt{3}\right)\left(1+2\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
4-\left(1-2^{2}\left(\sqrt{3}\right)^{2}\right)-\left(2\sqrt{3}-1\right)^{2}=4\sqrt{3}
Expand \left(2\sqrt{3}\right)^{2}.
4-\left(1-4\left(\sqrt{3}\right)^{2}\right)-\left(2\sqrt{3}-1\right)^{2}=4\sqrt{3}
Calculate 2 to the power of 2 and get 4.
4-\left(1-4\times 3\right)-\left(2\sqrt{3}-1\right)^{2}=4\sqrt{3}
The square of \sqrt{3} is 3.
4-\left(1-12\right)-\left(2\sqrt{3}-1\right)^{2}=4\sqrt{3}
Multiply 4 and 3 to get 12.
4-\left(-11\right)-\left(2\sqrt{3}-1\right)^{2}=4\sqrt{3}
Subtract 12 from 1 to get -11.
4+11-\left(2\sqrt{3}-1\right)^{2}=4\sqrt{3}
The opposite of -11 is 11.
15-\left(2\sqrt{3}-1\right)^{2}=4\sqrt{3}
Add 4 and 11 to get 15.
15-\left(4\left(\sqrt{3}\right)^{2}-4\sqrt{3}+1\right)=4\sqrt{3}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2\sqrt{3}-1\right)^{2}.
15-\left(4\times 3-4\sqrt{3}+1\right)=4\sqrt{3}
The square of \sqrt{3} is 3.
15-\left(12-4\sqrt{3}+1\right)=4\sqrt{3}
Multiply 4 and 3 to get 12.
15-\left(13-4\sqrt{3}\right)=4\sqrt{3}
Add 12 and 1 to get 13.
15-13+4\sqrt{3}=4\sqrt{3}
To find the opposite of 13-4\sqrt{3}, find the opposite of each term.
2+4\sqrt{3}=4\sqrt{3}
Subtract 13 from 15 to get 2.
2+4\sqrt{3}-4\sqrt{3}=0
Subtract 4\sqrt{3} from both sides.
2=0
Combine 4\sqrt{3} and -4\sqrt{3} to get 0.
\text{false}
Compare 2 and 0.