Solve for x
x=-2
Graph
Share
Copied to clipboard
8-\left(4+\sqrt{16+8x}\right)=4
Multiply both sides of the equation by 2.
8-4-\sqrt{16+8x}=4
To find the opposite of 4+\sqrt{16+8x}, find the opposite of each term.
4-\sqrt{16+8x}=4
Subtract 4 from 8 to get 4.
-\sqrt{16+8x}=4-4
Subtract 4 from both sides.
-\sqrt{16+8x}=0
Subtract 4 from 4 to get 0.
\sqrt{16+8x}=0
Divide both sides by -1. Zero divided by any non-zero number gives zero.
8x+16=0
Square both sides of the equation.
8x+16-16=-16
Subtract 16 from both sides of the equation.
8x=-16
Subtracting 16 from itself leaves 0.
\frac{8x}{8}=-\frac{16}{8}
Divide both sides by 8.
x=-\frac{16}{8}
Dividing by 8 undoes the multiplication by 8.
x=-2
Divide -16 by 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}