Solve for x
x = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
x = \frac{16}{7} = 2\frac{2}{7} \approx 2.285714286
Graph
Share
Copied to clipboard
4\left(x^{2}-6x+9\right)-25\left(x-2\right)^{2}=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
4x^{2}-24x+36-25\left(x-2\right)^{2}=0
Use the distributive property to multiply 4 by x^{2}-6x+9.
4x^{2}-24x+36-25\left(x^{2}-4x+4\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
4x^{2}-24x+36-25x^{2}+100x-100=0
Use the distributive property to multiply -25 by x^{2}-4x+4.
-21x^{2}-24x+36+100x-100=0
Combine 4x^{2} and -25x^{2} to get -21x^{2}.
-21x^{2}+76x+36-100=0
Combine -24x and 100x to get 76x.
-21x^{2}+76x-64=0
Subtract 100 from 36 to get -64.
x=\frac{-76±\sqrt{76^{2}-4\left(-21\right)\left(-64\right)}}{2\left(-21\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -21 for a, 76 for b, and -64 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-76±\sqrt{5776-4\left(-21\right)\left(-64\right)}}{2\left(-21\right)}
Square 76.
x=\frac{-76±\sqrt{5776+84\left(-64\right)}}{2\left(-21\right)}
Multiply -4 times -21.
x=\frac{-76±\sqrt{5776-5376}}{2\left(-21\right)}
Multiply 84 times -64.
x=\frac{-76±\sqrt{400}}{2\left(-21\right)}
Add 5776 to -5376.
x=\frac{-76±20}{2\left(-21\right)}
Take the square root of 400.
x=\frac{-76±20}{-42}
Multiply 2 times -21.
x=-\frac{56}{-42}
Now solve the equation x=\frac{-76±20}{-42} when ± is plus. Add -76 to 20.
x=\frac{4}{3}
Reduce the fraction \frac{-56}{-42} to lowest terms by extracting and canceling out 14.
x=-\frac{96}{-42}
Now solve the equation x=\frac{-76±20}{-42} when ± is minus. Subtract 20 from -76.
x=\frac{16}{7}
Reduce the fraction \frac{-96}{-42} to lowest terms by extracting and canceling out 6.
x=\frac{4}{3} x=\frac{16}{7}
The equation is now solved.
4\left(x^{2}-6x+9\right)-25\left(x-2\right)^{2}=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
4x^{2}-24x+36-25\left(x-2\right)^{2}=0
Use the distributive property to multiply 4 by x^{2}-6x+9.
4x^{2}-24x+36-25\left(x^{2}-4x+4\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
4x^{2}-24x+36-25x^{2}+100x-100=0
Use the distributive property to multiply -25 by x^{2}-4x+4.
-21x^{2}-24x+36+100x-100=0
Combine 4x^{2} and -25x^{2} to get -21x^{2}.
-21x^{2}+76x+36-100=0
Combine -24x and 100x to get 76x.
-21x^{2}+76x-64=0
Subtract 100 from 36 to get -64.
-21x^{2}+76x=64
Add 64 to both sides. Anything plus zero gives itself.
\frac{-21x^{2}+76x}{-21}=\frac{64}{-21}
Divide both sides by -21.
x^{2}+\frac{76}{-21}x=\frac{64}{-21}
Dividing by -21 undoes the multiplication by -21.
x^{2}-\frac{76}{21}x=\frac{64}{-21}
Divide 76 by -21.
x^{2}-\frac{76}{21}x=-\frac{64}{21}
Divide 64 by -21.
x^{2}-\frac{76}{21}x+\left(-\frac{38}{21}\right)^{2}=-\frac{64}{21}+\left(-\frac{38}{21}\right)^{2}
Divide -\frac{76}{21}, the coefficient of the x term, by 2 to get -\frac{38}{21}. Then add the square of -\frac{38}{21} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{76}{21}x+\frac{1444}{441}=-\frac{64}{21}+\frac{1444}{441}
Square -\frac{38}{21} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{76}{21}x+\frac{1444}{441}=\frac{100}{441}
Add -\frac{64}{21} to \frac{1444}{441} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{38}{21}\right)^{2}=\frac{100}{441}
Factor x^{2}-\frac{76}{21}x+\frac{1444}{441}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{38}{21}\right)^{2}}=\sqrt{\frac{100}{441}}
Take the square root of both sides of the equation.
x-\frac{38}{21}=\frac{10}{21} x-\frac{38}{21}=-\frac{10}{21}
Simplify.
x=\frac{16}{7} x=\frac{4}{3}
Add \frac{38}{21} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}