Evaluate
4\left(w-5\right)\left(w-4\right)\left(w-2\right)
Expand
4w^{3}-44w^{2}+152w-160
Share
Copied to clipboard
\left(4w-16\right)\left(w-5\right)\left(w-2\right)
Use the distributive property to multiply 4 by w-4.
\left(4w^{2}-20w-16w+80\right)\left(w-2\right)
Apply the distributive property by multiplying each term of 4w-16 by each term of w-5.
\left(4w^{2}-36w+80\right)\left(w-2\right)
Combine -20w and -16w to get -36w.
4w^{3}-8w^{2}-36w^{2}+72w+80w-160
Apply the distributive property by multiplying each term of 4w^{2}-36w+80 by each term of w-2.
4w^{3}-44w^{2}+72w+80w-160
Combine -8w^{2} and -36w^{2} to get -44w^{2}.
4w^{3}-44w^{2}+152w-160
Combine 72w and 80w to get 152w.
\left(4w-16\right)\left(w-5\right)\left(w-2\right)
Use the distributive property to multiply 4 by w-4.
\left(4w^{2}-20w-16w+80\right)\left(w-2\right)
Apply the distributive property by multiplying each term of 4w-16 by each term of w-5.
\left(4w^{2}-36w+80\right)\left(w-2\right)
Combine -20w and -16w to get -36w.
4w^{3}-8w^{2}-36w^{2}+72w+80w-160
Apply the distributive property by multiplying each term of 4w^{2}-36w+80 by each term of w-2.
4w^{3}-44w^{2}+72w+80w-160
Combine -8w^{2} and -36w^{2} to get -44w^{2}.
4w^{3}-44w^{2}+152w-160
Combine 72w and 80w to get 152w.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}