Evaluate
64-4q^{2}+32p-28pq-45p^{2}
Expand
64-4q^{2}+32p-28pq-45p^{2}
Share
Copied to clipboard
4\left(p^{2}+8p+16\right)-\left(7p+2q\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(p+4\right)^{2}.
4p^{2}+32p+64-\left(7p+2q\right)^{2}
Use the distributive property to multiply 4 by p^{2}+8p+16.
4p^{2}+32p+64-\left(49p^{2}+28pq+4q^{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(7p+2q\right)^{2}.
4p^{2}+32p+64-49p^{2}-28pq-4q^{2}
To find the opposite of 49p^{2}+28pq+4q^{2}, find the opposite of each term.
-45p^{2}+32p+64-28pq-4q^{2}
Combine 4p^{2} and -49p^{2} to get -45p^{2}.
4\left(p^{2}+8p+16\right)-\left(7p+2q\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(p+4\right)^{2}.
4p^{2}+32p+64-\left(7p+2q\right)^{2}
Use the distributive property to multiply 4 by p^{2}+8p+16.
4p^{2}+32p+64-\left(49p^{2}+28pq+4q^{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(7p+2q\right)^{2}.
4p^{2}+32p+64-49p^{2}-28pq-4q^{2}
To find the opposite of 49p^{2}+28pq+4q^{2}, find the opposite of each term.
-45p^{2}+32p+64-28pq-4q^{2}
Combine 4p^{2} and -49p^{2} to get -45p^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}