Skip to main content
Solve for y
Tick mark Image

Similar Problems from Web Search

Share

4\left(64y^{2}+16y+1\right)-27=\left(4y+9\right)\left(4y-9\right)+2\left(5y+2\right)\left(2y-7\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(8y+1\right)^{2}.
256y^{2}+64y+4-27=\left(4y+9\right)\left(4y-9\right)+2\left(5y+2\right)\left(2y-7\right)
Use the distributive property to multiply 4 by 64y^{2}+16y+1.
256y^{2}+64y-23=\left(4y+9\right)\left(4y-9\right)+2\left(5y+2\right)\left(2y-7\right)
Subtract 27 from 4 to get -23.
256y^{2}+64y-23=\left(4y\right)^{2}-81+2\left(5y+2\right)\left(2y-7\right)
Consider \left(4y+9\right)\left(4y-9\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 9.
256y^{2}+64y-23=4^{2}y^{2}-81+2\left(5y+2\right)\left(2y-7\right)
Expand \left(4y\right)^{2}.
256y^{2}+64y-23=16y^{2}-81+2\left(5y+2\right)\left(2y-7\right)
Calculate 4 to the power of 2 and get 16.
256y^{2}+64y-23=16y^{2}-81+\left(10y+4\right)\left(2y-7\right)
Use the distributive property to multiply 2 by 5y+2.
256y^{2}+64y-23=16y^{2}-81+20y^{2}-62y-28
Use the distributive property to multiply 10y+4 by 2y-7 and combine like terms.
256y^{2}+64y-23=36y^{2}-81-62y-28
Combine 16y^{2} and 20y^{2} to get 36y^{2}.
256y^{2}+64y-23=36y^{2}-109-62y
Subtract 28 from -81 to get -109.
256y^{2}+64y-23-36y^{2}=-109-62y
Subtract 36y^{2} from both sides.
220y^{2}+64y-23=-109-62y
Combine 256y^{2} and -36y^{2} to get 220y^{2}.
220y^{2}+64y-23-\left(-109\right)=-62y
Subtract -109 from both sides.
220y^{2}+64y-23+109=-62y
The opposite of -109 is 109.
220y^{2}+64y-23+109+62y=0
Add 62y to both sides.
220y^{2}+64y+86+62y=0
Add -23 and 109 to get 86.
220y^{2}+126y+86=0
Combine 64y and 62y to get 126y.
y=\frac{-126±\sqrt{126^{2}-4\times 220\times 86}}{2\times 220}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 220 for a, 126 for b, and 86 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-126±\sqrt{15876-4\times 220\times 86}}{2\times 220}
Square 126.
y=\frac{-126±\sqrt{15876-880\times 86}}{2\times 220}
Multiply -4 times 220.
y=\frac{-126±\sqrt{15876-75680}}{2\times 220}
Multiply -880 times 86.
y=\frac{-126±\sqrt{-59804}}{2\times 220}
Add 15876 to -75680.
y=\frac{-126±2\sqrt{14951}i}{2\times 220}
Take the square root of -59804.
y=\frac{-126±2\sqrt{14951}i}{440}
Multiply 2 times 220.
y=\frac{-126+2\sqrt{14951}i}{440}
Now solve the equation y=\frac{-126±2\sqrt{14951}i}{440} when ± is plus. Add -126 to 2i\sqrt{14951}.
y=\frac{-63+\sqrt{14951}i}{220}
Divide -126+2i\sqrt{14951} by 440.
y=\frac{-2\sqrt{14951}i-126}{440}
Now solve the equation y=\frac{-126±2\sqrt{14951}i}{440} when ± is minus. Subtract 2i\sqrt{14951} from -126.
y=\frac{-\sqrt{14951}i-63}{220}
Divide -126-2i\sqrt{14951} by 440.
y=\frac{-63+\sqrt{14951}i}{220} y=\frac{-\sqrt{14951}i-63}{220}
The equation is now solved.
4\left(64y^{2}+16y+1\right)-27=\left(4y+9\right)\left(4y-9\right)+2\left(5y+2\right)\left(2y-7\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(8y+1\right)^{2}.
256y^{2}+64y+4-27=\left(4y+9\right)\left(4y-9\right)+2\left(5y+2\right)\left(2y-7\right)
Use the distributive property to multiply 4 by 64y^{2}+16y+1.
256y^{2}+64y-23=\left(4y+9\right)\left(4y-9\right)+2\left(5y+2\right)\left(2y-7\right)
Subtract 27 from 4 to get -23.
256y^{2}+64y-23=\left(4y\right)^{2}-81+2\left(5y+2\right)\left(2y-7\right)
Consider \left(4y+9\right)\left(4y-9\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 9.
256y^{2}+64y-23=4^{2}y^{2}-81+2\left(5y+2\right)\left(2y-7\right)
Expand \left(4y\right)^{2}.
256y^{2}+64y-23=16y^{2}-81+2\left(5y+2\right)\left(2y-7\right)
Calculate 4 to the power of 2 and get 16.
256y^{2}+64y-23=16y^{2}-81+\left(10y+4\right)\left(2y-7\right)
Use the distributive property to multiply 2 by 5y+2.
256y^{2}+64y-23=16y^{2}-81+20y^{2}-62y-28
Use the distributive property to multiply 10y+4 by 2y-7 and combine like terms.
256y^{2}+64y-23=36y^{2}-81-62y-28
Combine 16y^{2} and 20y^{2} to get 36y^{2}.
256y^{2}+64y-23=36y^{2}-109-62y
Subtract 28 from -81 to get -109.
256y^{2}+64y-23-36y^{2}=-109-62y
Subtract 36y^{2} from both sides.
220y^{2}+64y-23=-109-62y
Combine 256y^{2} and -36y^{2} to get 220y^{2}.
220y^{2}+64y-23+62y=-109
Add 62y to both sides.
220y^{2}+126y-23=-109
Combine 64y and 62y to get 126y.
220y^{2}+126y=-109+23
Add 23 to both sides.
220y^{2}+126y=-86
Add -109 and 23 to get -86.
\frac{220y^{2}+126y}{220}=-\frac{86}{220}
Divide both sides by 220.
y^{2}+\frac{126}{220}y=-\frac{86}{220}
Dividing by 220 undoes the multiplication by 220.
y^{2}+\frac{63}{110}y=-\frac{86}{220}
Reduce the fraction \frac{126}{220} to lowest terms by extracting and canceling out 2.
y^{2}+\frac{63}{110}y=-\frac{43}{110}
Reduce the fraction \frac{-86}{220} to lowest terms by extracting and canceling out 2.
y^{2}+\frac{63}{110}y+\left(\frac{63}{220}\right)^{2}=-\frac{43}{110}+\left(\frac{63}{220}\right)^{2}
Divide \frac{63}{110}, the coefficient of the x term, by 2 to get \frac{63}{220}. Then add the square of \frac{63}{220} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+\frac{63}{110}y+\frac{3969}{48400}=-\frac{43}{110}+\frac{3969}{48400}
Square \frac{63}{220} by squaring both the numerator and the denominator of the fraction.
y^{2}+\frac{63}{110}y+\frac{3969}{48400}=-\frac{14951}{48400}
Add -\frac{43}{110} to \frac{3969}{48400} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y+\frac{63}{220}\right)^{2}=-\frac{14951}{48400}
Factor y^{2}+\frac{63}{110}y+\frac{3969}{48400}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{63}{220}\right)^{2}}=\sqrt{-\frac{14951}{48400}}
Take the square root of both sides of the equation.
y+\frac{63}{220}=\frac{\sqrt{14951}i}{220} y+\frac{63}{220}=-\frac{\sqrt{14951}i}{220}
Simplify.
y=\frac{-63+\sqrt{14951}i}{220} y=\frac{-\sqrt{14951}i-63}{220}
Subtract \frac{63}{220} from both sides of the equation.