Solve for y
y = \frac{5}{2} = 2\frac{1}{2} = 2.5
y = \frac{13}{6} = 2\frac{1}{6} \approx 2.166666667
Graph
Share
Copied to clipboard
\frac{4\left(3y-7\right)^{2}}{4}=\frac{1}{4}
Divide both sides by 4.
\left(3y-7\right)^{2}=\frac{1}{4}
Dividing by 4 undoes the multiplication by 4.
3y-7=\frac{1}{2} 3y-7=-\frac{1}{2}
Take the square root of both sides of the equation.
3y-7-\left(-7\right)=\frac{1}{2}-\left(-7\right) 3y-7-\left(-7\right)=-\frac{1}{2}-\left(-7\right)
Add 7 to both sides of the equation.
3y=\frac{1}{2}-\left(-7\right) 3y=-\frac{1}{2}-\left(-7\right)
Subtracting -7 from itself leaves 0.
3y=\frac{15}{2}
Subtract -7 from \frac{1}{2}.
3y=\frac{13}{2}
Subtract -7 from -\frac{1}{2}.
\frac{3y}{3}=\frac{\frac{15}{2}}{3} \frac{3y}{3}=\frac{\frac{13}{2}}{3}
Divide both sides by 3.
y=\frac{\frac{15}{2}}{3} y=\frac{\frac{13}{2}}{3}
Dividing by 3 undoes the multiplication by 3.
y=\frac{5}{2}
Divide \frac{15}{2} by 3.
y=\frac{13}{6}
Divide \frac{13}{2} by 3.
y=\frac{5}{2} y=\frac{13}{6}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}