Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

4\left(-597+122i\right)-\frac{4-2i}{4-3i}
Calculate 3+2i to the power of 5 and get -597+122i.
-2388+488i-\frac{4-2i}{4-3i}
Multiply 4 and -597+122i to get -2388+488i.
-2388+488i-\frac{\left(4-2i\right)\left(4+3i\right)}{\left(4-3i\right)\left(4+3i\right)}
Multiply both numerator and denominator of \frac{4-2i}{4-3i} by the complex conjugate of the denominator, 4+3i.
-2388+488i-\frac{22+4i}{25}
Do the multiplications in \frac{\left(4-2i\right)\left(4+3i\right)}{\left(4-3i\right)\left(4+3i\right)}.
-2388+488i+\left(-\frac{22}{25}-\frac{4}{25}i\right)
Divide 22+4i by 25 to get \frac{22}{25}+\frac{4}{25}i.
-\frac{59722}{25}+\frac{12196}{25}i
Add -2388+488i and -\frac{22}{25}-\frac{4}{25}i to get -\frac{59722}{25}+\frac{12196}{25}i.
Re(4\left(-597+122i\right)-\frac{4-2i}{4-3i})
Calculate 3+2i to the power of 5 and get -597+122i.
Re(-2388+488i-\frac{4-2i}{4-3i})
Multiply 4 and -597+122i to get -2388+488i.
Re(-2388+488i-\frac{\left(4-2i\right)\left(4+3i\right)}{\left(4-3i\right)\left(4+3i\right)})
Multiply both numerator and denominator of \frac{4-2i}{4-3i} by the complex conjugate of the denominator, 4+3i.
Re(-2388+488i-\frac{22+4i}{25})
Do the multiplications in \frac{\left(4-2i\right)\left(4+3i\right)}{\left(4-3i\right)\left(4+3i\right)}.
Re(-2388+488i+\left(-\frac{22}{25}-\frac{4}{25}i\right))
Divide 22+4i by 25 to get \frac{22}{25}+\frac{4}{25}i.
Re(-\frac{59722}{25}+\frac{12196}{25}i)
Add -2388+488i and -\frac{22}{25}-\frac{4}{25}i to get -\frac{59722}{25}+\frac{12196}{25}i.
-\frac{59722}{25}
The real part of -\frac{59722}{25}+\frac{12196}{25}i is -\frac{59722}{25}.