Evaluate
-\frac{59722}{25}+\frac{12196}{25}i=-2388.88+487.84i
Real Part
-\frac{59722}{25} = -2388\frac{22}{25} = -2388.88
Share
Copied to clipboard
4\left(-597+122i\right)-\frac{4-2i}{4-3i}
Calculate 3+2i to the power of 5 and get -597+122i.
-2388+488i-\frac{4-2i}{4-3i}
Multiply 4 and -597+122i to get -2388+488i.
-2388+488i-\frac{\left(4-2i\right)\left(4+3i\right)}{\left(4-3i\right)\left(4+3i\right)}
Multiply both numerator and denominator of \frac{4-2i}{4-3i} by the complex conjugate of the denominator, 4+3i.
-2388+488i-\frac{22+4i}{25}
Do the multiplications in \frac{\left(4-2i\right)\left(4+3i\right)}{\left(4-3i\right)\left(4+3i\right)}.
-2388+488i+\left(-\frac{22}{25}-\frac{4}{25}i\right)
Divide 22+4i by 25 to get \frac{22}{25}+\frac{4}{25}i.
-\frac{59722}{25}+\frac{12196}{25}i
Add -2388+488i and -\frac{22}{25}-\frac{4}{25}i to get -\frac{59722}{25}+\frac{12196}{25}i.
Re(4\left(-597+122i\right)-\frac{4-2i}{4-3i})
Calculate 3+2i to the power of 5 and get -597+122i.
Re(-2388+488i-\frac{4-2i}{4-3i})
Multiply 4 and -597+122i to get -2388+488i.
Re(-2388+488i-\frac{\left(4-2i\right)\left(4+3i\right)}{\left(4-3i\right)\left(4+3i\right)})
Multiply both numerator and denominator of \frac{4-2i}{4-3i} by the complex conjugate of the denominator, 4+3i.
Re(-2388+488i-\frac{22+4i}{25})
Do the multiplications in \frac{\left(4-2i\right)\left(4+3i\right)}{\left(4-3i\right)\left(4+3i\right)}.
Re(-2388+488i+\left(-\frac{22}{25}-\frac{4}{25}i\right))
Divide 22+4i by 25 to get \frac{22}{25}+\frac{4}{25}i.
Re(-\frac{59722}{25}+\frac{12196}{25}i)
Add -2388+488i and -\frac{22}{25}-\frac{4}{25}i to get -\frac{59722}{25}+\frac{12196}{25}i.
-\frac{59722}{25}
The real part of -\frac{59722}{25}+\frac{12196}{25}i is -\frac{59722}{25}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}