Solve for f
f=4\times \left(\frac{2y-5}{3y-1}\right)^{2}
y\neq \frac{1}{3}
Solve for y
\left\{\begin{matrix}y=-\frac{-\sqrt{f}+10}{3\sqrt{f}-4}\text{; }y=\frac{\sqrt{f}+10}{3\sqrt{f}+4}\text{, }&f\neq \frac{16}{9}\text{ and }f\geq 0\\y=\frac{17}{12}\text{, }&f=\frac{16}{9}\end{matrix}\right.
Graph
Share
Copied to clipboard
4\left(4y^{2}-20y+25\right)=f\left(3y-1\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2y-5\right)^{2}.
16y^{2}-80y+100=f\left(3y-1\right)^{2}
Use the distributive property to multiply 4 by 4y^{2}-20y+25.
16y^{2}-80y+100=f\left(9y^{2}-6y+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3y-1\right)^{2}.
16y^{2}-80y+100=9fy^{2}-6fy+f
Use the distributive property to multiply f by 9y^{2}-6y+1.
9fy^{2}-6fy+f=16y^{2}-80y+100
Swap sides so that all variable terms are on the left hand side.
\left(9y^{2}-6y+1\right)f=16y^{2}-80y+100
Combine all terms containing f.
\frac{\left(9y^{2}-6y+1\right)f}{9y^{2}-6y+1}=\frac{4\left(2y-5\right)^{2}}{9y^{2}-6y+1}
Divide both sides by 9y^{2}-6y+1.
f=\frac{4\left(2y-5\right)^{2}}{9y^{2}-6y+1}
Dividing by 9y^{2}-6y+1 undoes the multiplication by 9y^{2}-6y+1.
f=\frac{4\left(2y-5\right)^{2}}{\left(3y-1\right)^{2}}
Divide 4\left(2y-5\right)^{2} by 9y^{2}-6y+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}