Skip to main content
Solve for f
Tick mark Image
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

4\left(4y^{2}-20y+25\right)=f\left(3y-1\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2y-5\right)^{2}.
16y^{2}-80y+100=f\left(3y-1\right)^{2}
Use the distributive property to multiply 4 by 4y^{2}-20y+25.
16y^{2}-80y+100=f\left(9y^{2}-6y+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3y-1\right)^{2}.
16y^{2}-80y+100=9fy^{2}-6fy+f
Use the distributive property to multiply f by 9y^{2}-6y+1.
9fy^{2}-6fy+f=16y^{2}-80y+100
Swap sides so that all variable terms are on the left hand side.
\left(9y^{2}-6y+1\right)f=16y^{2}-80y+100
Combine all terms containing f.
\frac{\left(9y^{2}-6y+1\right)f}{9y^{2}-6y+1}=\frac{4\left(2y-5\right)^{2}}{9y^{2}-6y+1}
Divide both sides by 9y^{2}-6y+1.
f=\frac{4\left(2y-5\right)^{2}}{9y^{2}-6y+1}
Dividing by 9y^{2}-6y+1 undoes the multiplication by 9y^{2}-6y+1.
f=\frac{4\left(2y-5\right)^{2}}{\left(3y-1\right)^{2}}
Divide 4\left(2y-5\right)^{2} by 9y^{2}-6y+1.