Evaluate
4\sqrt{3}x\left(2-x\right)^{2}
Differentiate w.r.t. x
4\sqrt{3}\left(x-2\right)\left(3x-2\right)
Graph
Share
Copied to clipboard
4\left(4-4x+x^{2}\right)\sqrt{3}x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-x\right)^{2}.
\left(16-16x+4x^{2}\right)\sqrt{3}x
Use the distributive property to multiply 4 by 4-4x+x^{2}.
\left(16\sqrt{3}-16x\sqrt{3}+4x^{2}\sqrt{3}\right)x
Use the distributive property to multiply 16-16x+4x^{2} by \sqrt{3}.
16\sqrt{3}x-16\sqrt{3}x^{2}+4\sqrt{3}x^{3}
Use the distributive property to multiply 16\sqrt{3}-16x\sqrt{3}+4x^{2}\sqrt{3} by x.
\frac{\mathrm{d}}{\mathrm{d}x}(4\left(4-4x+x^{2}\right)\sqrt{3}x)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-x\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(16-16x+4x^{2}\right)\sqrt{3}x)
Use the distributive property to multiply 4 by 4-4x+x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(16\sqrt{3}-16x\sqrt{3}+4x^{2}\sqrt{3}\right)x)
Use the distributive property to multiply 16-16x+4x^{2} by \sqrt{3}.
\frac{\mathrm{d}}{\mathrm{d}x}(16\sqrt{3}x-16\sqrt{3}x^{2}+4\sqrt{3}x^{3})
Use the distributive property to multiply 16\sqrt{3}-16x\sqrt{3}+4x^{2}\sqrt{3} by x.
16\sqrt{3}x^{1-1}+2\left(-16\sqrt{3}\right)x^{2-1}+3\times 4\sqrt{3}x^{3-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
16\sqrt{3}x^{0}+2\left(-16\sqrt{3}\right)x^{2-1}+3\times 4\sqrt{3}x^{3-1}
Subtract 1 from 1.
16\sqrt{3}x^{0}+\left(-32\sqrt{3}\right)x^{2-1}+3\times 4\sqrt{3}x^{3-1}
Multiply 2 times -16\sqrt{3}.
16\sqrt{3}x^{0}+\left(-32\sqrt{3}\right)x^{1}+3\times 4\sqrt{3}x^{3-1}
Subtract 1 from 2.
16\sqrt{3}x^{0}+\left(-32\sqrt{3}\right)x^{1}+12\sqrt{3}x^{3-1}
Multiply 2 times -16\sqrt{3}.
16\sqrt{3}x^{0}+\left(-32\sqrt{3}\right)x^{1}+12\sqrt{3}x^{2}
Subtract 1 from 3.
16\sqrt{3}x^{0}+\left(-32\sqrt{3}\right)x+12\sqrt{3}x^{2}
For any term t, t^{1}=t.
16\sqrt{3}\times 1+\left(-32\sqrt{3}\right)x+12\sqrt{3}x^{2}
For any term t except 0, t^{0}=1.
16\sqrt{3}+\left(-32\sqrt{3}\right)x+12\sqrt{3}x^{2}
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}