Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4\left(4-4x+x^{2}\right)\sqrt{3}x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-x\right)^{2}.
\left(16-16x+4x^{2}\right)\sqrt{3}x
Use the distributive property to multiply 4 by 4-4x+x^{2}.
\left(16\sqrt{3}-16x\sqrt{3}+4x^{2}\sqrt{3}\right)x
Use the distributive property to multiply 16-16x+4x^{2} by \sqrt{3}.
16\sqrt{3}x-16\sqrt{3}x^{2}+4\sqrt{3}x^{3}
Use the distributive property to multiply 16\sqrt{3}-16x\sqrt{3}+4x^{2}\sqrt{3} by x.
\frac{\mathrm{d}}{\mathrm{d}x}(4\left(4-4x+x^{2}\right)\sqrt{3}x)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-x\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(16-16x+4x^{2}\right)\sqrt{3}x)
Use the distributive property to multiply 4 by 4-4x+x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(16\sqrt{3}-16x\sqrt{3}+4x^{2}\sqrt{3}\right)x)
Use the distributive property to multiply 16-16x+4x^{2} by \sqrt{3}.
\frac{\mathrm{d}}{\mathrm{d}x}(16\sqrt{3}x-16\sqrt{3}x^{2}+4\sqrt{3}x^{3})
Use the distributive property to multiply 16\sqrt{3}-16x\sqrt{3}+4x^{2}\sqrt{3} by x.
16\sqrt{3}x^{1-1}+2\left(-16\sqrt{3}\right)x^{2-1}+3\times 4\sqrt{3}x^{3-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
16\sqrt{3}x^{0}+2\left(-16\sqrt{3}\right)x^{2-1}+3\times 4\sqrt{3}x^{3-1}
Subtract 1 from 1.
16\sqrt{3}x^{0}+\left(-32\sqrt{3}\right)x^{2-1}+3\times 4\sqrt{3}x^{3-1}
Multiply 2 times -16\sqrt{3}.
16\sqrt{3}x^{0}+\left(-32\sqrt{3}\right)x^{1}+3\times 4\sqrt{3}x^{3-1}
Subtract 1 from 2.
16\sqrt{3}x^{0}+\left(-32\sqrt{3}\right)x^{1}+12\sqrt{3}x^{3-1}
Multiply 2 times -16\sqrt{3}.
16\sqrt{3}x^{0}+\left(-32\sqrt{3}\right)x^{1}+12\sqrt{3}x^{2}
Subtract 1 from 3.
16\sqrt{3}x^{0}+\left(-32\sqrt{3}\right)x+12\sqrt{3}x^{2}
For any term t, t^{1}=t.
16\sqrt{3}\times 1+\left(-32\sqrt{3}\right)x+12\sqrt{3}x^{2}
For any term t except 0, t^{0}=1.
16\sqrt{3}+\left(-32\sqrt{3}\right)x+12\sqrt{3}x^{2}
For any term t, t\times 1=t and 1t=t.