Solve for y
y=\frac{1}{15}\approx 0.066666667
Graph
Share
Copied to clipboard
4\times \frac{3}{5}y+4\times \frac{1}{100}+5y=\frac{8}{15}
Use the distributive property to multiply 4 by \frac{3}{5}y+\frac{1}{100}.
\frac{4\times 3}{5}y+4\times \frac{1}{100}+5y=\frac{8}{15}
Express 4\times \frac{3}{5} as a single fraction.
\frac{12}{5}y+4\times \frac{1}{100}+5y=\frac{8}{15}
Multiply 4 and 3 to get 12.
\frac{12}{5}y+\frac{4}{100}+5y=\frac{8}{15}
Multiply 4 and \frac{1}{100} to get \frac{4}{100}.
\frac{12}{5}y+\frac{1}{25}+5y=\frac{8}{15}
Reduce the fraction \frac{4}{100} to lowest terms by extracting and canceling out 4.
\frac{37}{5}y+\frac{1}{25}=\frac{8}{15}
Combine \frac{12}{5}y and 5y to get \frac{37}{5}y.
\frac{37}{5}y=\frac{8}{15}-\frac{1}{25}
Subtract \frac{1}{25} from both sides.
\frac{37}{5}y=\frac{40}{75}-\frac{3}{75}
Least common multiple of 15 and 25 is 75. Convert \frac{8}{15} and \frac{1}{25} to fractions with denominator 75.
\frac{37}{5}y=\frac{40-3}{75}
Since \frac{40}{75} and \frac{3}{75} have the same denominator, subtract them by subtracting their numerators.
\frac{37}{5}y=\frac{37}{75}
Subtract 3 from 40 to get 37.
y=\frac{37}{75}\times \frac{5}{37}
Multiply both sides by \frac{5}{37}, the reciprocal of \frac{37}{5}.
y=\frac{37\times 5}{75\times 37}
Multiply \frac{37}{75} times \frac{5}{37} by multiplying numerator times numerator and denominator times denominator.
y=\frac{5}{75}
Cancel out 37 in both numerator and denominator.
y=\frac{1}{15}
Reduce the fraction \frac{5}{75} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}