Factor
\left(z+5\right)\left(4z+3\right)
Evaluate
\left(z+5\right)\left(4z+3\right)
Share
Copied to clipboard
a+b=23 ab=4\times 15=60
Factor the expression by grouping. First, the expression needs to be rewritten as 4z^{2}+az+bz+15. To find a and b, set up a system to be solved.
1,60 2,30 3,20 4,15 5,12 6,10
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 60.
1+60=61 2+30=32 3+20=23 4+15=19 5+12=17 6+10=16
Calculate the sum for each pair.
a=3 b=20
The solution is the pair that gives sum 23.
\left(4z^{2}+3z\right)+\left(20z+15\right)
Rewrite 4z^{2}+23z+15 as \left(4z^{2}+3z\right)+\left(20z+15\right).
z\left(4z+3\right)+5\left(4z+3\right)
Factor out z in the first and 5 in the second group.
\left(4z+3\right)\left(z+5\right)
Factor out common term 4z+3 by using distributive property.
4z^{2}+23z+15=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
z=\frac{-23±\sqrt{23^{2}-4\times 4\times 15}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
z=\frac{-23±\sqrt{529-4\times 4\times 15}}{2\times 4}
Square 23.
z=\frac{-23±\sqrt{529-16\times 15}}{2\times 4}
Multiply -4 times 4.
z=\frac{-23±\sqrt{529-240}}{2\times 4}
Multiply -16 times 15.
z=\frac{-23±\sqrt{289}}{2\times 4}
Add 529 to -240.
z=\frac{-23±17}{2\times 4}
Take the square root of 289.
z=\frac{-23±17}{8}
Multiply 2 times 4.
z=-\frac{6}{8}
Now solve the equation z=\frac{-23±17}{8} when ± is plus. Add -23 to 17.
z=-\frac{3}{4}
Reduce the fraction \frac{-6}{8} to lowest terms by extracting and canceling out 2.
z=-\frac{40}{8}
Now solve the equation z=\frac{-23±17}{8} when ± is minus. Subtract 17 from -23.
z=-5
Divide -40 by 8.
4z^{2}+23z+15=4\left(z-\left(-\frac{3}{4}\right)\right)\left(z-\left(-5\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{3}{4} for x_{1} and -5 for x_{2}.
4z^{2}+23z+15=4\left(z+\frac{3}{4}\right)\left(z+5\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
4z^{2}+23z+15=4\times \frac{4z+3}{4}\left(z+5\right)
Add \frac{3}{4} to z by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
4z^{2}+23z+15=\left(4z+3\right)\left(z+5\right)
Cancel out 4, the greatest common factor in 4 and 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}