Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(2y^{2}-4y+3\right)
Factor out 2. Polynomial 2y^{2}-4y+3 is not factored since it does not have any rational roots.
4y^{2}-8y+6=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 4\times 6}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-8\right)±\sqrt{64-4\times 4\times 6}}{2\times 4}
Square -8.
y=\frac{-\left(-8\right)±\sqrt{64-16\times 6}}{2\times 4}
Multiply -4 times 4.
y=\frac{-\left(-8\right)±\sqrt{64-96}}{2\times 4}
Multiply -16 times 6.
y=\frac{-\left(-8\right)±\sqrt{-32}}{2\times 4}
Add 64 to -96.
4y^{2}-8y+6
Since the square root of a negative number is not defined in the real field, there are no solutions. Quadratic polynomial cannot be factored.