Solve for x
x = \frac{\sqrt{137} + 5}{4} \approx 4.176174978
x=\frac{5-\sqrt{137}}{4}\approx -1.676174978
Graph
Share
Copied to clipboard
4x^{2}-x\times 2-28=8x
Subtract 28 from both sides.
4x^{2}-x\times 2-28-8x=0
Subtract 8x from both sides.
4x^{2}-2x-28-8x=0
Multiply -1 and 2 to get -2.
4x^{2}-10x-28=0
Combine -2x and -8x to get -10x.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 4\left(-28\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -10 for b, and -28 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 4\left(-28\right)}}{2\times 4}
Square -10.
x=\frac{-\left(-10\right)±\sqrt{100-16\left(-28\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-10\right)±\sqrt{100+448}}{2\times 4}
Multiply -16 times -28.
x=\frac{-\left(-10\right)±\sqrt{548}}{2\times 4}
Add 100 to 448.
x=\frac{-\left(-10\right)±2\sqrt{137}}{2\times 4}
Take the square root of 548.
x=\frac{10±2\sqrt{137}}{2\times 4}
The opposite of -10 is 10.
x=\frac{10±2\sqrt{137}}{8}
Multiply 2 times 4.
x=\frac{2\sqrt{137}+10}{8}
Now solve the equation x=\frac{10±2\sqrt{137}}{8} when ± is plus. Add 10 to 2\sqrt{137}.
x=\frac{\sqrt{137}+5}{4}
Divide 10+2\sqrt{137} by 8.
x=\frac{10-2\sqrt{137}}{8}
Now solve the equation x=\frac{10±2\sqrt{137}}{8} when ± is minus. Subtract 2\sqrt{137} from 10.
x=\frac{5-\sqrt{137}}{4}
Divide 10-2\sqrt{137} by 8.
x=\frac{\sqrt{137}+5}{4} x=\frac{5-\sqrt{137}}{4}
The equation is now solved.
4x^{2}-x\times 2-8x=28
Subtract 8x from both sides.
4x^{2}-2x-8x=28
Multiply -1 and 2 to get -2.
4x^{2}-10x=28
Combine -2x and -8x to get -10x.
\frac{4x^{2}-10x}{4}=\frac{28}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{10}{4}\right)x=\frac{28}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-\frac{5}{2}x=\frac{28}{4}
Reduce the fraction \frac{-10}{4} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{5}{2}x=7
Divide 28 by 4.
x^{2}-\frac{5}{2}x+\left(-\frac{5}{4}\right)^{2}=7+\left(-\frac{5}{4}\right)^{2}
Divide -\frac{5}{2}, the coefficient of the x term, by 2 to get -\frac{5}{4}. Then add the square of -\frac{5}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{5}{2}x+\frac{25}{16}=7+\frac{25}{16}
Square -\frac{5}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{137}{16}
Add 7 to \frac{25}{16}.
\left(x-\frac{5}{4}\right)^{2}=\frac{137}{16}
Factor x^{2}-\frac{5}{2}x+\frac{25}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{4}\right)^{2}}=\sqrt{\frac{137}{16}}
Take the square root of both sides of the equation.
x-\frac{5}{4}=\frac{\sqrt{137}}{4} x-\frac{5}{4}=-\frac{\sqrt{137}}{4}
Simplify.
x=\frac{\sqrt{137}+5}{4} x=\frac{5-\sqrt{137}}{4}
Add \frac{5}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}