Factor
\left(x-3\right)\left(4x+3\right)
Evaluate
\left(x-3\right)\left(4x+3\right)
Graph
Share
Copied to clipboard
a+b=-9 ab=4\left(-9\right)=-36
Factor the expression by grouping. First, the expression needs to be rewritten as 4x^{2}+ax+bx-9. To find a and b, set up a system to be solved.
1,-36 2,-18 3,-12 4,-9 6,-6
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -36.
1-36=-35 2-18=-16 3-12=-9 4-9=-5 6-6=0
Calculate the sum for each pair.
a=-12 b=3
The solution is the pair that gives sum -9.
\left(4x^{2}-12x\right)+\left(3x-9\right)
Rewrite 4x^{2}-9x-9 as \left(4x^{2}-12x\right)+\left(3x-9\right).
4x\left(x-3\right)+3\left(x-3\right)
Factor out 4x in the first and 3 in the second group.
\left(x-3\right)\left(4x+3\right)
Factor out common term x-3 by using distributive property.
4x^{2}-9x-9=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 4\left(-9\right)}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 4\left(-9\right)}}{2\times 4}
Square -9.
x=\frac{-\left(-9\right)±\sqrt{81-16\left(-9\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-9\right)±\sqrt{81+144}}{2\times 4}
Multiply -16 times -9.
x=\frac{-\left(-9\right)±\sqrt{225}}{2\times 4}
Add 81 to 144.
x=\frac{-\left(-9\right)±15}{2\times 4}
Take the square root of 225.
x=\frac{9±15}{2\times 4}
The opposite of -9 is 9.
x=\frac{9±15}{8}
Multiply 2 times 4.
x=\frac{24}{8}
Now solve the equation x=\frac{9±15}{8} when ± is plus. Add 9 to 15.
x=3
Divide 24 by 8.
x=-\frac{6}{8}
Now solve the equation x=\frac{9±15}{8} when ± is minus. Subtract 15 from 9.
x=-\frac{3}{4}
Reduce the fraction \frac{-6}{8} to lowest terms by extracting and canceling out 2.
4x^{2}-9x-9=4\left(x-3\right)\left(x-\left(-\frac{3}{4}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 3 for x_{1} and -\frac{3}{4} for x_{2}.
4x^{2}-9x-9=4\left(x-3\right)\left(x+\frac{3}{4}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
4x^{2}-9x-9=4\left(x-3\right)\times \frac{4x+3}{4}
Add \frac{3}{4} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
4x^{2}-9x-9=\left(x-3\right)\left(4x+3\right)
Cancel out 4, the greatest common factor in 4 and 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}