Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

4\left(x^{2}-10x+24\right)
Factor out 4.
a+b=-10 ab=1\times 24=24
Consider x^{2}-10x+24. Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+ax+bx+24. To find a and b, set up a system to be solved.
-1,-24 -2,-12 -3,-8 -4,-6
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 24.
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
Calculate the sum for each pair.
a=-6 b=-4
The solution is the pair that gives sum -10.
\left(x^{2}-6x\right)+\left(-4x+24\right)
Rewrite x^{2}-10x+24 as \left(x^{2}-6x\right)+\left(-4x+24\right).
x\left(x-6\right)-4\left(x-6\right)
Factor out x in the first and -4 in the second group.
\left(x-6\right)\left(x-4\right)
Factor out common term x-6 by using distributive property.
4\left(x-6\right)\left(x-4\right)
Rewrite the complete factored expression.
4x^{2}-40x+96=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}-4\times 4\times 96}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-40\right)±\sqrt{1600-4\times 4\times 96}}{2\times 4}
Square -40.
x=\frac{-\left(-40\right)±\sqrt{1600-16\times 96}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-40\right)±\sqrt{1600-1536}}{2\times 4}
Multiply -16 times 96.
x=\frac{-\left(-40\right)±\sqrt{64}}{2\times 4}
Add 1600 to -1536.
x=\frac{-\left(-40\right)±8}{2\times 4}
Take the square root of 64.
x=\frac{40±8}{2\times 4}
The opposite of -40 is 40.
x=\frac{40±8}{8}
Multiply 2 times 4.
x=\frac{48}{8}
Now solve the equation x=\frac{40±8}{8} when ± is plus. Add 40 to 8.
x=6
Divide 48 by 8.
x=\frac{32}{8}
Now solve the equation x=\frac{40±8}{8} when ± is minus. Subtract 8 from 40.
x=4
Divide 32 by 8.
4x^{2}-40x+96=4\left(x-6\right)\left(x-4\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 6 for x_{1} and 4 for x_{2}.