Solve for x
x=16
x=81
Graph
Share
Copied to clipboard
4x^{2}-388x+5184=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-388\right)±\sqrt{\left(-388\right)^{2}-4\times 4\times 5184}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -388 for b, and 5184 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-388\right)±\sqrt{150544-4\times 4\times 5184}}{2\times 4}
Square -388.
x=\frac{-\left(-388\right)±\sqrt{150544-16\times 5184}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-388\right)±\sqrt{150544-82944}}{2\times 4}
Multiply -16 times 5184.
x=\frac{-\left(-388\right)±\sqrt{67600}}{2\times 4}
Add 150544 to -82944.
x=\frac{-\left(-388\right)±260}{2\times 4}
Take the square root of 67600.
x=\frac{388±260}{2\times 4}
The opposite of -388 is 388.
x=\frac{388±260}{8}
Multiply 2 times 4.
x=\frac{648}{8}
Now solve the equation x=\frac{388±260}{8} when ± is plus. Add 388 to 260.
x=81
Divide 648 by 8.
x=\frac{128}{8}
Now solve the equation x=\frac{388±260}{8} when ± is minus. Subtract 260 from 388.
x=16
Divide 128 by 8.
x=81 x=16
The equation is now solved.
4x^{2}-388x+5184=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4x^{2}-388x+5184-5184=-5184
Subtract 5184 from both sides of the equation.
4x^{2}-388x=-5184
Subtracting 5184 from itself leaves 0.
\frac{4x^{2}-388x}{4}=-\frac{5184}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{388}{4}\right)x=-\frac{5184}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-97x=-\frac{5184}{4}
Divide -388 by 4.
x^{2}-97x=-1296
Divide -5184 by 4.
x^{2}-97x+\left(-\frac{97}{2}\right)^{2}=-1296+\left(-\frac{97}{2}\right)^{2}
Divide -97, the coefficient of the x term, by 2 to get -\frac{97}{2}. Then add the square of -\frac{97}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-97x+\frac{9409}{4}=-1296+\frac{9409}{4}
Square -\frac{97}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-97x+\frac{9409}{4}=\frac{4225}{4}
Add -1296 to \frac{9409}{4}.
\left(x-\frac{97}{2}\right)^{2}=\frac{4225}{4}
Factor x^{2}-97x+\frac{9409}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{97}{2}\right)^{2}}=\sqrt{\frac{4225}{4}}
Take the square root of both sides of the equation.
x-\frac{97}{2}=\frac{65}{2} x-\frac{97}{2}=-\frac{65}{2}
Simplify.
x=81 x=16
Add \frac{97}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}