Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}-26x+24=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-26\right)±\sqrt{\left(-26\right)^{2}-4\times 4\times 24}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -26 for b, and 24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-26\right)±\sqrt{676-4\times 4\times 24}}{2\times 4}
Square -26.
x=\frac{-\left(-26\right)±\sqrt{676-16\times 24}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-26\right)±\sqrt{676-384}}{2\times 4}
Multiply -16 times 24.
x=\frac{-\left(-26\right)±\sqrt{292}}{2\times 4}
Add 676 to -384.
x=\frac{-\left(-26\right)±2\sqrt{73}}{2\times 4}
Take the square root of 292.
x=\frac{26±2\sqrt{73}}{2\times 4}
The opposite of -26 is 26.
x=\frac{26±2\sqrt{73}}{8}
Multiply 2 times 4.
x=\frac{2\sqrt{73}+26}{8}
Now solve the equation x=\frac{26±2\sqrt{73}}{8} when ± is plus. Add 26 to 2\sqrt{73}.
x=\frac{\sqrt{73}+13}{4}
Divide 26+2\sqrt{73} by 8.
x=\frac{26-2\sqrt{73}}{8}
Now solve the equation x=\frac{26±2\sqrt{73}}{8} when ± is minus. Subtract 2\sqrt{73} from 26.
x=\frac{13-\sqrt{73}}{4}
Divide 26-2\sqrt{73} by 8.
x=\frac{\sqrt{73}+13}{4} x=\frac{13-\sqrt{73}}{4}
The equation is now solved.
4x^{2}-26x+24=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4x^{2}-26x+24-24=-24
Subtract 24 from both sides of the equation.
4x^{2}-26x=-24
Subtracting 24 from itself leaves 0.
\frac{4x^{2}-26x}{4}=-\frac{24}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{26}{4}\right)x=-\frac{24}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-\frac{13}{2}x=-\frac{24}{4}
Reduce the fraction \frac{-26}{4} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{13}{2}x=-6
Divide -24 by 4.
x^{2}-\frac{13}{2}x+\left(-\frac{13}{4}\right)^{2}=-6+\left(-\frac{13}{4}\right)^{2}
Divide -\frac{13}{2}, the coefficient of the x term, by 2 to get -\frac{13}{4}. Then add the square of -\frac{13}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{13}{2}x+\frac{169}{16}=-6+\frac{169}{16}
Square -\frac{13}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{13}{2}x+\frac{169}{16}=\frac{73}{16}
Add -6 to \frac{169}{16}.
\left(x-\frac{13}{4}\right)^{2}=\frac{73}{16}
Factor x^{2}-\frac{13}{2}x+\frac{169}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{13}{4}\right)^{2}}=\sqrt{\frac{73}{16}}
Take the square root of both sides of the equation.
x-\frac{13}{4}=\frac{\sqrt{73}}{4} x-\frac{13}{4}=-\frac{\sqrt{73}}{4}
Simplify.
x=\frac{\sqrt{73}+13}{4} x=\frac{13-\sqrt{73}}{4}
Add \frac{13}{4} to both sides of the equation.